Attending From Foresight: A Novel Attention Mechanism for Neural Machine Translation

Machines translation (MT) is an essential task in natural language processing or even in artificial intelligence. Statistical machine translation has been the dominant approach to MT for decades, but recently neural machine translation achieves increasing interest because of its appealing model arch...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/ACM transactions on audio, speech, and language processing Ročník 29; s. 2606 - 2616
Hlavní autoři: Li, Xintong, Liu, Lemao, Tu, Zhaopeng, Li, Guanlin, Shi, Shuming, Meng, Max Q.-H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2329-9290, 2329-9304
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Machines translation (MT) is an essential task in natural language processing or even in artificial intelligence. Statistical machine translation has been the dominant approach to MT for decades, but recently neural machine translation achieves increasing interest because of its appealing model architecture and impressive translation performance. In neural machine translation, an attention model is used to identify the aligned source words for the next target word, i.e., target foresight word, to select translation context. However, it does not make use of any information about this target foresight word at all. Previous work proposed an approach to improve the attention model by explicitly accessing this target foresight word and demonstrating substantial alignment tasks. However, this approach cannot be applied in machine translation tasks where the target foresight word is unavailable. This paper proposes several novel enhanced attention models by introducing hidden information (such as part-of-speech) of the target foresight word for the translation task. We incorporate the novel enhanced attention employing hidden information about the target foresight word into both recurrent and self-attention-based neural translation models and theoretically justify that such hidden information can make translation prediction easier. Empirical experiments on four datasets further verify that the proposed attention models deliver significant improvements in translation quality.
AbstractList Machines translation (MT) is an essential task in natural language processing or even in artificial intelligence. Statistical machine translation has been the dominant approach to MT for decades, but recently neural machine translation achieves increasing interest because of its appealing model architecture and impressive translation performance. In neural machine translation, an attention model is used to identify the aligned source words for the next target word, i.e., target foresight word, to select translation context. However, it does not make use of any information about this target foresight word at all. Previous work proposed an approach to improve the attention model by explicitly accessing this target foresight word and demonstrating substantial alignment tasks. However, this approach cannot be applied in machine translation tasks where the target foresight word is unavailable. This paper proposes several novel enhanced attention models by introducing hidden information (such as part-of-speech) of the target foresight word for the translation task. We incorporate the novel enhanced attention employing hidden information about the target foresight word into both recurrent and self-attention-based neural translation models and theoretically justify that such hidden information can make translation prediction easier. Empirical experiments on four datasets further verify that the proposed attention models deliver significant improvements in translation quality.
Machines translation (MT) is an essential task in natural language processing or even in artificial intelligence. Statistical machine translation has been the dominant approach to MT for decades, but recently neural machine translation achieves increasing interest because of its appealing model architecture and impressive translation performance. In neural machine translation, an attention model is used to identify the aligned source words for the next target word, i.e., target foresight word, to select translation context. However, it does not make use of any information about this target foresight word at all. Previous work proposed an approach to improve the attention model by explicitly accessing this target foresight word and demonstrating substantial alignment tasks. However, this approach cannot be applied in machine translation tasks where the target foresight word is unavailable. This paper proposes several novel enhanced attention models by introducing hidden information (such as part-of-speech) of the target foresight word for the translation task. We incorporate the novel enhanced attention employing hidden information about the target foresight word into both recurrent and self-attention-based neural translation models and theoretically justify that such hidden information can make translation prediction easier. Empirical experiments on four datasets further verify that the proposed attention models deliver significant improvements in translation quality.
Author Li, Xintong
Liu, Lemao
Tu, Zhaopeng
Li, Guanlin
Meng, Max Q.-H.
Shi, Shuming
Author_xml – sequence: 1
  givenname: Xintong
  orcidid: 0000-0001-9303-1110
  surname: Li
  fullname: Li, Xintong
  email: znculee@gmail.com
  organization: Linguisitics, Ohio State University, Columbus, Ohio, USA
– sequence: 2
  givenname: Lemao
  surname: Liu
  fullname: Liu, Lemao
  email: lemaoliu@gmail.com
  organization: Tencent AI Lab, Shenzhen, Guangdong, China
– sequence: 3
  givenname: Zhaopeng
  surname: Tu
  fullname: Tu, Zhaopeng
  email: tuzhaopeng@gmail.com
  organization: Tencent AI Lab, Shenzhen, Guangdong, China
– sequence: 4
  givenname: Guanlin
  orcidid: 0000-0003-3142-5928
  surname: Li
  fullname: Li, Guanlin
  email: epsilonlee.green@gmail.com
  organization: Tencent AI Lab, Shenzhen, Guangdong, China
– sequence: 5
  givenname: Shuming
  surname: Shi
  fullname: Shi, Shuming
  email: shumingshi@tencent.com
  organization: Tencent AI Lab, Shenzhen, Guangdong, China
– sequence: 6
  givenname: Max Q.-H.
  orcidid: 0000-0002-5255-5898
  surname: Meng
  fullname: Meng, Max Q.-H.
  email: max.meng@cuhk.edu.hk
  organization: Electronic Engineering, Chinese University of Hong Kong, Hong Kong
BookMark eNp9kMtOwzAQRS0EEqX0B2BjiXXK2M5r2EUVBaS2IJF95CRO6yq1i50i8fekD1iwYDWzOGce94qcG2sUITcMxowB3ufZ--xtzIGzsQBMUOAZGXDBMUAB4flPzxEuycj7NQAwSBCTcEDyrOuUqbVZ0qmzGzq1Tnm9XHUPNKML-6laeiA6bQ2dq2oljfYb2lhHF2rnZEvnslppo2jupPGt3IPX5KKRrVejUx2SfPqYT56D2evTyySbBRXHqAtYzDgkMS9lw1OEuokFC-sqLUGyJInCpGkwjEsOUGIlUykE1jJKY8A4VUkphuTuOHbr7MdO-a5Y250z_caCR3H_tOAQ91R6pCpnvXeqKSrdHc7snNRtwaDYp1gcUiz2KRanFHuV_1G3Tm-k-_pfuj1KWin1K2CIIKJIfAO1X36m
CODEN ITASD8
CitedBy_id crossref_primary_10_3390_app14156848
crossref_primary_10_1007_s13042_022_01759_5
crossref_primary_10_1002_int_22909
crossref_primary_10_3390_systems12100420
crossref_primary_10_1155_acis_6234949
crossref_primary_10_1007_s10489_023_04848_2
crossref_primary_10_1109_TASLP_2022_3221040
crossref_primary_10_1145_3549937
Cites_doi 10.1613/jair.1.12008
10.21236/ADA461156
10.18653/v1/2020.acl-main.35
10.3115/1557769.1557821
10.18653/v1/D15-1166
10.18653/v1/N19-1187
10.1109/CVPR.2016.90
10.18653/v1/P16-1008
10.18653/v1/P19-1124
10.3115/1220355.1220511
10.1109/TNNLS.2013.2263557
10.18653/v1/N16-1046
10.1515/pralin-2017-0006
10.18653/v1/E17-3017
10.18653/v1/D16-1249
10.1145/1014052.1014067
10.18653/v1/2020.acl-main.757
10.18653/v1/P18-2053
10.1162/tacl_a_00097
10.3115/1073445.1073478
10.1109/TNNLS.2015.2497149
10.1109/TASLP.2018.2789721
10.18653/v1/W16-2209
10.18653/v1/P18-1163
10.1162/tacl_a_00011
10.3115/1219840.1219873
10.1109/TNNLS.2018.2813306
10.18653/v1/N18-1125
10.1109/TNNLS.2015.2499302
10.1017/CBO9780511815829
10.3115/1219840.1219897
10.18653/v1/N16-1102
10.18653/v1/D18-1036
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TASLP.2021.3097939
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9304
EndPage 2616
ExternalDocumentID 10_1109_TASLP_2021_3097939
9490355
Genre orig-research
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACIWK
ACM
ADBCU
AEBYY
AEFXT
AEJOY
AENSD
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
EBS
EJD
GUFHI
HGAVV
IFIPE
IPLJI
JAVBF
LHSKQ
M43
OCL
PQQKQ
RIA
RIE
RNS
ROL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-16120762baf2890df6314dc8b0a177547ff946b200b9ca8a339da5860968e7b3
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685887100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2329-9290
IngestDate Sun Nov 30 03:58:04 EST 2025
Sat Nov 29 02:43:55 EST 2025
Tue Nov 18 22:20:17 EST 2025
Wed Aug 27 02:25:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-16120762baf2890df6314dc8b0a177547ff946b200b9ca8a339da5860968e7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3142-5928
0000-0001-9303-1110
0000-0002-5255-5898
PQID 2562323206
PQPubID 85426
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TASLP_2021_3097939
proquest_journals_2562323206
crossref_primary_10_1109_TASLP_2021_3097939
ieee_primary_9490355
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/ACM transactions on audio, speech, and language processing
PublicationTitleAbbrev TASLP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References deng (ref33) 2018
ref13
ref14
ref53
ref52
ref11
ref54
ref10
dutil (ref58) 2017
zeiler (ref43) 2012
ref16
ref19
kingma (ref45) 2014
ref51
ref50
brown (ref41) 1992; 18
ref47
ba (ref27) 2016
ref49
ref8
ref9
ref4
zhou (ref59) 2017
chen (ref60) 2018
ref40
sennrich (ref44) 2015
ref35
meng (ref55) 2016
ref37
vinyals (ref3) 2015
ref36
ref30
li (ref23) 2019
ref32
clark (ref46) 2011
ref2
ref1
ref38
zhang (ref57) 2017
marie (ref18) 2018
vaswani (ref17) 2017
liu (ref5) 2018
ref24
serban (ref6) 2016
ref26
chen (ref62) 2016
ref25
luong (ref31) 2015
ref20
ref22
ref21
sankaran (ref56) 2016
ref29
bahdanau (ref12) 2014
liu (ref28) 2016
goto (ref34) 2013
liu (ref48) 2015
liang (ref42) 2005
zhang (ref39) 2017
feng (ref15) 2016
ref61
xu (ref7) 2015
References_xml – start-page: 3776
  year: 2016
  ident: ref6
  article-title: Building end-to-end dialogue systems using generative hierarchical neural network models
  publication-title: Proc AAAI Conf Artif Intell
– start-page: 2295
  year: 2015
  ident: ref48
  article-title: Contrastive unsupervised word alignment with non-local features
  publication-title: Proc 29th AAAI Conf Artif Intell
– ident: ref36
  doi: 10.1613/jair.1.12008
– ident: ref11
  doi: 10.21236/ADA461156
– start-page: 4792
  year: 2018
  ident: ref60
  article-title: Syntax-Directed attention for neural machine translation
  publication-title: Proc AAAI Conf Artif Intell
– start-page: 466
  year: 2019
  ident: ref23
  article-title: Understanding and improving hidden representations for neural machine translation
  publication-title: Proc Conf North Amer Chapter Assoc Comput Linguistics Hum Lang Technol
– year: 2018
  ident: ref33
  article-title: Latent alignment and variational attention
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref25
  doi: 10.18653/v1/2020.acl-main.35
– year: 2005
  ident: ref42
  article-title: Semi-supervised learning for natural language
– ident: ref37
  doi: 10.3115/1557769.1557821
– ident: ref13
  doi: 10.18653/v1/D15-1166
– ident: ref19
  doi: 10.18653/v1/N19-1187
– ident: ref26
  doi: 10.1109/CVPR.2016.90
– year: 2014
  ident: ref45
  article-title: Adam: A method for stochastic optimization
– ident: ref14
  doi: 10.18653/v1/P16-1008
– ident: ref49
  doi: 10.18653/v1/P19-1124
– start-page: 176
  year: 2011
  ident: ref46
  article-title: Better hypothesis testing for statistical machine translation: Controlling for optimizer instability
  publication-title: Proc 49th Annu Meeting Assoc Comput Linguistics Hum Lang Technol
– ident: ref50
  doi: 10.3115/1220355.1220511
– year: 2016
  ident: ref28
  article-title: Neural machine translation with supervised attention
– ident: ref9
  doi: 10.1109/TNNLS.2013.2263557
– ident: ref35
  doi: 10.18653/v1/N16-1046
– year: 2015
  ident: ref44
  article-title: Neural machine translation of rare words with subword units
– year: 2016
  ident: ref56
  article-title: Temporal attention model for neural machine translation
– ident: ref22
  doi: 10.1515/pralin-2017-0006
– ident: ref38
  doi: 10.18653/v1/E17-3017
– start-page: 4873
  year: 2018
  ident: ref5
  article-title: Improving sequence-to-sequence constituency parsing
  publication-title: Proc 32nd AAAI Conf Artif Intell
– ident: ref61
  doi: 10.18653/v1/D16-1249
– ident: ref30
  doi: 10.1145/1014052.1014067
– year: 2016
  ident: ref55
  article-title: Interactive attention for neural machine translation
– year: 2014
  ident: ref12
  article-title: Neural machine translation by jointly learning to align and translate
– start-page: 5998
  year: 2017
  ident: ref17
  article-title: Attention is all you need
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref32
  doi: 10.18653/v1/2020.acl-main.757
– year: 2012
  ident: ref43
  article-title: Adadelta: An adaptive learning rate method
– ident: ref51
  doi: 10.18653/v1/P18-2053
– start-page: 2773
  year: 2015
  ident: ref3
  article-title: Grammar as a foreign language
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref54
  doi: 10.1162/tacl_a_00097
– ident: ref40
  doi: 10.3115/1073445.1073478
– ident: ref4
  doi: 10.1109/TNNLS.2015.2497149
– ident: ref20
  doi: 10.1109/TASLP.2018.2789721
– ident: ref47
  doi: 10.18653/v1/W16-2209
– ident: ref53
  doi: 10.18653/v1/P18-1163
– ident: ref29
  doi: 10.1162/tacl_a_00011
– year: 2016
  ident: ref62
  article-title: Guided alignment training for topic-aware neural machine translation
– ident: ref21
  doi: 10.3115/1219840.1219873
– ident: ref8
  doi: 10.1109/TNNLS.2018.2813306
– start-page: 260
  year: 2013
  ident: ref34
  article-title: Overview of the patent machine translation task at the NTCIR-10 workshop
  publication-title: Proc NTCIR Workshop
– ident: ref1
  doi: 10.18653/v1/N18-1125
– start-page: 211
  year: 2017
  ident: ref59
  article-title: Look-Ahead attention for generation in neural machine translation
  publication-title: Nat CCF Conf Natural Lang Process Chin Comput
– year: 2017
  ident: ref58
  article-title: Plan, Attend, Generate: Planning for sequence-to-sequence models
  publication-title: Proc Int Conf Neural Inf Process
– year: 2017
  ident: ref57
  article-title: A gru-gated attention model for neural machine translation
– start-page: 2048
  year: 2015
  ident: ref7
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: Proc Int Conf Mach Learn
– year: 2016
  ident: ref27
  article-title: Layer normalization
– start-page: 975
  year: 2018
  ident: ref18
  article-title: Combination of statistical and neural machine translation for myanmar-english
  publication-title: Proc 32nd Pacific Asia Conf Lang Inf Comput 5th Workshop Asian Transl 5th Workshop Asian Transl
– volume: 18
  start-page: 467
  year: 1992
  ident: ref41
  article-title: Class-based n-gram models of natural language
  publication-title: Comput Linguistics
– ident: ref10
  doi: 10.1109/TNNLS.2015.2499302
– ident: ref2
  doi: 10.1017/CBO9780511815829
– ident: ref24
  doi: 10.3115/1219840.1219897
– year: 2017
  ident: ref39
  article-title: Thumt: An open source toolkit for neural machine translation
– year: 2015
  ident: ref31
  article-title: Multi-task sequence to sequence learning
– ident: ref16
  doi: 10.18653/v1/N16-1102
– ident: ref52
  doi: 10.18653/v1/D18-1036
– start-page: 3082
  year: 2016
  ident: ref15
  article-title: Improving attention modeling with implicit distortion and fertility for machine translation
  publication-title: Proc 26th Int Conf Comput Linguistics Tech Papers
SSID ssj0001079974
Score 2.221881
Snippet Machines translation (MT) is an essential task in natural language processing or even in artificial intelligence. Statistical machine translation has been the...
Machines translation (MT) is an essential task in natural language processing or even in artificial intelligence. Statistical machine translation has been the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2606
SubjectTerms Artificial intelligence
Attention
Context modeling
Decoding
Machine translation
Natural language processing
NMT
Predictive models
Recurrent neural networks
Task analysis
Unemployment
Word Alignment
Words (language)
Title Attending From Foresight: A Novel Attention Mechanism for Neural Machine Translation
URI https://ieeexplore.ieee.org/document/9490355
https://www.proquest.com/docview/2562323206
Volume 29
WOSCitedRecordID wos000685887100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2329-9304
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001079974
  issn: 2329-9290
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLa2iQMceA3EYKAcuEG3bOmamluFmDhs0yR62K3qw5UmwYb2-v04aTdAICTUSw52VNlJ_NmJbYBbmSIxDFIO6Uw6bpxnTqxQOR5pt8cQXyPZROGBHo38yQTHFbjf5cIQkX18Ri0ztHf52Txdm1BZG12UbB-rUNXaK3K1PuMpUiPaosuMEdBhqy-3OTIS22HwMhizN9jttJREXpP4zQ7Zxio_TmNrYvpH__u5YzgsoaQICt2fQIVmp3DwpcBgHcJgZWLcPBb9xfxNmEacS-OOP4hAjOYbYnZDYbQjhmSygKfLN8FAVpiqHTz70D62JGFtWvFu7gzC_lP4-OyUfRSctIu9lcOgriv50Evi3FwrZrmnOm6W-omMO6YAns5zdL2E90uCaezHSmEW93yPvRufdKLOoTabz-gCREo-86GXeVoxG5_z5GaaWQkxT7RqQGcr1Cgta4ybVhevkfU1JEZWEZFRRFQqogF3O573osLGn9R1I_odZSn1BjS3uovKTbiMugbb8Se9y9-5rmDfzF1EVJpQWy3WdA176WY1XS5u7Pr6AO1rzAs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGQAIOvBGDATlwg7Ks6Zqa24SYQGwTEj3sVvXhSpPYhrbB78dJuwECIaFecrDbKk7sz05sA1zIFIlhkHJIZ9Lx4jxzYoXK8Ul7LYb4GskmCnd1vx8MBvhUgatlLgwR2ctndG2G9iw_m6RvJlTWQA8l28cVWG15niuLbK3PiIrUiLbsMqMEdNjuy0WWjMRG2H7uPrE_6DavlURelfjNEtnWKj_0sTUyne3__d4ObJVgUrQL6e9ChcZ7sPmlxOA-hO25iXLzWHSmk5EwrThnxiG_EW3Rn7wTsxsKIx_RI5MHPJyNBENZYep28Nt79rolCWvViptzBxB27sLbe6fspOCkLrbmDsM6V7LaS-LcHCxmua-aXpYGiYybpgSeznP0_IR3TIJpHMRKYRa3Ap_9m4B0og6hOp6M6QhESgHzoZ_5WjEba3ryMs2shJgnWtWguZjUKC2rjJtmFy-R9TYkRlYQkRFEVAqiBpdLnteixsaf1Ptm6peU5azXoL6QXVRuw1nkGnTHj_SPf-c6h_X7sNeNug_9xxPYMN8p4it1qM6nb3QKa-n7fDibntm19gG2Is9S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attending+From+Foresight%3A+A+Novel+Attention+Mechanism+for+Neural+Machine+Translation&rft.jtitle=IEEE%2FACM+transactions+on+audio%2C+speech%2C+and+language+processing&rft.au=Li%2C+Xintong&rft.au=Liu%2C+Lemao&rft.au=Tu%2C+Zhaopeng&rft.au=Li%2C+Guanlin&rft.date=2021&rft.issn=2329-9290&rft.eissn=2329-9304&rft.volume=29&rft.spage=2606&rft.epage=2616&rft_id=info:doi/10.1109%2FTASLP.2021.3097939&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASLP_2021_3097939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9290&client=summon