Denoising of Radar Pulse Streams With Autoencoders

There are many cases in which the noise corrupts the signals in a significant manner. To better analyze these signals, the noise must be removed from the signals for further data analysis, and the process of noise removal is referred to as denoising. In this letter, we propose a novel approach to th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE communications letters Ročník 24; číslo 4; s. 797 - 801
Hlavní autoři: Li, Xueqiong, Liu, Zhang-Meng, Huang, Zhitao
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-7798, 1558-2558
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract There are many cases in which the noise corrupts the signals in a significant manner. To better analyze these signals, the noise must be removed from the signals for further data analysis, and the process of noise removal is referred to as denoising. In this letter, we propose a novel approach to the pulse denoising problem by extracting features from time of arrival (TOA) sequences using the autoencoders. The noise-contaminated TOA sequence is first coded into a binary vector and then fed into an autoencoder for training. Then, the trained autoencoder is capable of generating the original TOA sequence without lost and spurious pulses. Moreover, the proposed method does not require a noise-free TOA sequence as a priori as with conventional autoencoders. Simulation results show that the new technique can deal with TOA sequences with complex pulse repetition interval (PRI) modes that have not been tackled before. In addition, the proposed method has a better performance in noisy environments than conventional methods and general deep neural network structures.
AbstractList There are many cases in which the noise corrupts the signals in a significant manner. To better analyze these signals, the noise must be removed from the signals for further data analysis, and the process of noise removal is referred to as denoising. In this letter, we propose a novel approach to the pulse denoising problem by extracting features from time of arrival (TOA) sequences using the autoencoders. The noise-contaminated TOA sequence is first coded into a binary vector and then fed into an autoencoder for training. Then, the trained autoencoder is capable of generating the original TOA sequence without lost and spurious pulses. Moreover, the proposed method does not require a noise-free TOA sequence as a priori as with conventional autoencoders. Simulation results show that the new technique can deal with TOA sequences with complex pulse repetition interval (PRI) modes that have not been tackled before. In addition, the proposed method has a better performance in noisy environments than conventional methods and general deep neural network structures.
Author Li, Xueqiong
Liu, Zhang-Meng
Huang, Zhitao
Author_xml – sequence: 1
  givenname: Xueqiong
  orcidid: 0000-0002-2364-4947
  surname: Li
  fullname: Li, Xueqiong
  email: lixueqiong13@nudt.edu.cn
  organization: Department of Electronic Science, National University of Defense Technology, Changsha, China
– sequence: 2
  givenname: Zhang-Meng
  orcidid: 0000-0001-9472-279X
  surname: Liu
  fullname: Liu, Zhang-Meng
  organization: Department of Electronic Science, National University of Defense Technology, Changsha, China
– sequence: 3
  givenname: Zhitao
  surname: Huang
  fullname: Huang, Zhitao
  organization: Department of Electronic Science, National University of Defense Technology, Changsha, China
BookMark eNp9kD1PwzAQhi1UJNrCH4AlEnOKfYkde6zKp9SqiA8xWo5zAVdtXOxk4N-T0oqBgeXeG97nTnpGZND4Bgk5Z3TCGFVX89lysZgABToBJYpM8CMyZJzLFPox6HcqVVoUSp6QUYwrSqkEzoYErrHxLrrmPfF18mQqE5LHbh0xeW4Dmk1M3lz7kUy71mNjfYUhnpLj2vSNs0OOyevtzcvsPp0v7x5m03lqQfE2ZcBKrJUpKHKu6kqALYwtc6sYryw1YEUuS8gVCKks1LxgmFNUtshLgQjZmFzu726D_-wwtnrlu9D0LzVkUjLKoNi15L5lg48xYK2ta03rfNMG49aaUb0zpH8M6Z0hfTDUo_AH3Qa3MeHrf-hiDzlE_AWkEiIXMvsG5hpysA
CODEN ICLEF6
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3539589
crossref_primary_10_7746_jkros_2023_18_3_271
crossref_primary_10_1109_LSP_2023_3284893
crossref_primary_10_1002_itl2_70022
crossref_primary_10_3390_rs16224131
crossref_primary_10_1007_s40747_023_01294_y
crossref_primary_10_1109_LCOMM_2025_3578081
crossref_primary_10_1007_s11760_025_04706_3
crossref_primary_10_1109_TAES_2024_3481212
crossref_primary_10_3390_s23063326
crossref_primary_10_1016_j_dsp_2022_103874
crossref_primary_10_1016_j_dsp_2025_105336
crossref_primary_10_3390_rs14215439
crossref_primary_10_3390_s23063123
crossref_primary_10_1016_j_aeue_2024_155535
crossref_primary_10_1109_TAES_2021_3079571
crossref_primary_10_1109_JSEN_2024_3466210
crossref_primary_10_1109_TSP_2022_3229630
Cites_doi 10.1109/TPAMI.2004.47
10.1109/ICCV.2015.178
10.21629/JSEE.2016.04.04
10.1109/CVPR.2016.488
10.1109/18.57199
10.1016/j.compbiomed.2007.06.003
10.1109/ICASSP.2011.5947265
10.1109/LSP.2003.821662
10.1109/7.845217
10.1109/LCOMM.2013.111413.131722
10.1007/978-1-4842-2766-4_12
10.1109/TCSVT.2009.2013491
10.1109/TAES.2018.2874139
10.1049/ip-f-2.1989.0025
10.1109/CVPR.2005.38
10.1109/MSP.2005.1550194
10.1109/LCOMM.2019.2903083
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LCOMM.2020.2967365
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2558
EndPage 801
ExternalDocumentID 10_1109_LCOMM_2020_2967365
8966468
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province
  grantid: 2019JJ10004
  funderid: 10.13039/501100004735
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-121bef9a70e559fd62c7acb4c915dc0a2c648b2492689c2f571e40e9c74b6ee23
IEDL.DBID RIE
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528817100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-7798
IngestDate Mon Jun 30 10:15:05 EDT 2025
Sat Nov 29 03:56:02 EST 2025
Tue Nov 18 22:18:41 EST 2025
Wed Aug 27 02:35:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-121bef9a70e559fd62c7acb4c915dc0a2c648b2492689c2f571e40e9c74b6ee23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2364-4947
0000-0001-9472-279X
PQID 2388101272
PQPubID 85419
PageCount 5
ParticipantIDs proquest_journals_2388101272
ieee_primary_8966468
crossref_citationtrail_10_1109_LCOMM_2020_2967365
crossref_primary_10_1109_LCOMM_2020_2967365
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE communications letters
PublicationTitleAbbrev COML
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref20
ref11
ref22
ref10
ref2
ref1
ref17
ref16
ref8
ref7
wiley (ref13) 1982
ref9
ref4
ref3
ref6
dabov (ref5) 2007
wiley (ref21) 2006
yang (ref18) 2016
rasmus (ref19) 2015
References_xml – ident: ref4
  doi: 10.1109/TPAMI.2004.47
– ident: ref17
  doi: 10.1109/ICCV.2015.178
– ident: ref12
  doi: 10.21629/JSEE.2016.04.04
– ident: ref20
  doi: 10.1109/CVPR.2016.488
– ident: ref7
  doi: 10.1109/18.57199
– ident: ref1
  doi: 10.1016/j.compbiomed.2007.06.003
– ident: ref11
  doi: 10.1109/ICASSP.2011.5947265
– ident: ref10
  doi: 10.1109/LSP.2003.821662
– start-page: 250
  year: 1982
  ident: ref13
  publication-title: Electronic Intelligence The Analysis of Radar Signals
– ident: ref15
  doi: 10.1109/7.845217
– ident: ref2
  doi: 10.1109/LCOMM.2013.111413.131722
– ident: ref22
  doi: 10.1007/978-1-4842-2766-4_12
– ident: ref6
  doi: 10.1109/TCSVT.2009.2013491
– ident: ref16
  doi: 10.1109/TAES.2018.2874139
– start-page: 145
  year: 2007
  ident: ref5
  article-title: Video denoising by sparse 3D transform-domain collaborative filtering
  publication-title: Proc 15th Eur Signal Process Conf
– ident: ref14
  doi: 10.1049/ip-f-2.1989.0025
– start-page: 3546
  year: 2015
  ident: ref19
  article-title: Semi-supervised learning with ladder networks
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2006
  ident: ref21
  publication-title: ELINT The Interception and Analysis of Radar Signals
– year: 2016
  ident: ref18
  article-title: Weakly-supervised disentangling with recurrent transformations for 3D view synthesis
  publication-title: arXiv 1601 00706
– ident: ref3
  doi: 10.1109/CVPR.2005.38
– ident: ref8
  doi: 10.1109/MSP.2005.1550194
– ident: ref9
  doi: 10.1109/LCOMM.2019.2903083
SSID ssj0008251
Score 2.4112735
Snippet There are many cases in which the noise corrupts the signals in a significant manner. To better analyze these signals, the noise must be removed from the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 797
SubjectTerms Artificial neural networks
autoencoders
binary coding
Computer simulation
Data analysis
Decoding
Denoising
Feature extraction
Noise
Noise reduction
Pulse repetition interval
pulse streams
Radar
Signal denoising
Signal processing
Switches
Task analysis
TOA sequences
Training
Title Denoising of Radar Pulse Streams With Autoencoders
URI https://ieeexplore.ieee.org/document/8966468
https://www.proquest.com/docview/2388101272
Volume 24
WOSCitedRecordID wos000528817100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2558
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008251
  issn: 1089-7798
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQMMvAqiUJAHNkibuElsj1UBMbSlQjy6RYlzEZUgQW3C78d20ggEQmLLYFvRd7bvu_M9AM4xppRz37Eki4XlMtu2IjlAZaog0wTajY0f8mnMplM-n4tZAy7rXBhENMFn2NOf5i0_zmShXWV9rri56_MmNBnzy1yt-tbVKZhlML1QjFHwdYKMLfrj0d1kokxBaveo0HFM3jclZLqq_LiKjX652fnfn-3CdsUjybAU_B40MN2HrS_VBdtArzDNFtoXQLKE3IdxuCSzQqlCop-iw7cVeV7kL2RY5JmuZqkjmg_g8eb6YXRrVS0SLEmFl1sOdSJMRMhsVKZBEvtUslBGrhSOF0s7pNJ3eWSqAnIhaeIxB5UYhGRu5CPSwSG00izFIyBe6IW-WjVSp9QVUgqp2BlDZZ_EEUXqdsBZYxbIqn64bmPxGhg7whaBwTnQOAcVzh24qOe8l9Uz_hzd1sjWIytQO9BdiyaoDtgqUEzDlCZj9Pj3WSewqdcug2y60MqXBZ7ChvzIF6vlmdk7n8OevuM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BNFEPfqERRd3Bm0620q3rkaAE40BiULktW_eIJLoZGP79tt1YNBoTbzu02_J7bd_vvb4PgHOMCfE81zYFi7lJmWWZkWihNFWQKQJNY-2HfPLZYOCNx3xYgcsyFwYRdfAZXqlHfZcfp2KhXGVNT3Jz6norsOpQSqw8W6s8d1USZh5OzyVn5N4yRcbiTb9z3-9LY5BYV4SrSCbnmxrSfVV-HMZaw3S3__dvO7BVMEmjnYt-FyqY7MHml_qCNSDXmKRT5Q0w0onxEMbhzBgupDI01GV0-DY3nqfZi9FeZKmqZ6limvfhsXsz6vTMokmCKQh3MtMmdoQTHjILpXEwiV0iWCgiKrjtxMIKiXCpF-m6gB4XZOIwG6UguGA0chFJ6wCqSZrgIRhO6ISufGsk9ynlQnAh-RlDaaHEEUFC62AvMQtEUUFcNbJ4DbQlYfFA4xwonIMC5zpclHPe8_oZf46uKWTLkQWodWgsRRMUW2weSK6hi5MxcvT7rDNY7436fuDfDu6OYUN9Jw-5aUA1my3wBNbERzadz071OvoE4BrCKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Denoising+of+Radar+Pulse+Streams+With+Autoencoders&rft.jtitle=IEEE+communications+letters&rft.au=Li%2C+Xueqiong&rft.au=Zhang-Meng%2C+Liu&rft.au=Huang%2C+Zhitao&rft.date=2020-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-7798&rft.eissn=1558-2558&rft.volume=24&rft.issue=4&rft.spage=797&rft_id=info:doi/10.1109%2FLCOMM.2020.2967365&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon