Denoising of Radar Pulse Streams With Autoencoders
There are many cases in which the noise corrupts the signals in a significant manner. To better analyze these signals, the noise must be removed from the signals for further data analysis, and the process of noise removal is referred to as denoising. In this letter, we propose a novel approach to th...
Saved in:
| Published in: | IEEE communications letters Vol. 24; no. 4; pp. 797 - 801 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1089-7798, 1558-2558 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | There are many cases in which the noise corrupts the signals in a significant manner. To better analyze these signals, the noise must be removed from the signals for further data analysis, and the process of noise removal is referred to as denoising. In this letter, we propose a novel approach to the pulse denoising problem by extracting features from time of arrival (TOA) sequences using the autoencoders. The noise-contaminated TOA sequence is first coded into a binary vector and then fed into an autoencoder for training. Then, the trained autoencoder is capable of generating the original TOA sequence without lost and spurious pulses. Moreover, the proposed method does not require a noise-free TOA sequence as a priori as with conventional autoencoders. Simulation results show that the new technique can deal with TOA sequences with complex pulse repetition interval (PRI) modes that have not been tackled before. In addition, the proposed method has a better performance in noisy environments than conventional methods and general deep neural network structures. |
|---|---|
| AbstractList | There are many cases in which the noise corrupts the signals in a significant manner. To better analyze these signals, the noise must be removed from the signals for further data analysis, and the process of noise removal is referred to as denoising. In this letter, we propose a novel approach to the pulse denoising problem by extracting features from time of arrival (TOA) sequences using the autoencoders. The noise-contaminated TOA sequence is first coded into a binary vector and then fed into an autoencoder for training. Then, the trained autoencoder is capable of generating the original TOA sequence without lost and spurious pulses. Moreover, the proposed method does not require a noise-free TOA sequence as a priori as with conventional autoencoders. Simulation results show that the new technique can deal with TOA sequences with complex pulse repetition interval (PRI) modes that have not been tackled before. In addition, the proposed method has a better performance in noisy environments than conventional methods and general deep neural network structures. |
| Author | Li, Xueqiong Liu, Zhang-Meng Huang, Zhitao |
| Author_xml | – sequence: 1 givenname: Xueqiong orcidid: 0000-0002-2364-4947 surname: Li fullname: Li, Xueqiong email: lixueqiong13@nudt.edu.cn organization: Department of Electronic Science, National University of Defense Technology, Changsha, China – sequence: 2 givenname: Zhang-Meng orcidid: 0000-0001-9472-279X surname: Liu fullname: Liu, Zhang-Meng organization: Department of Electronic Science, National University of Defense Technology, Changsha, China – sequence: 3 givenname: Zhitao surname: Huang fullname: Huang, Zhitao organization: Department of Electronic Science, National University of Defense Technology, Changsha, China |
| BookMark | eNp9kD1PwzAQhi1UJNrCH4AlEnOKfYkde6zKp9SqiA8xWo5zAVdtXOxk4N-T0oqBgeXeG97nTnpGZND4Bgk5Z3TCGFVX89lysZgABToBJYpM8CMyZJzLFPox6HcqVVoUSp6QUYwrSqkEzoYErrHxLrrmPfF18mQqE5LHbh0xeW4Dmk1M3lz7kUy71mNjfYUhnpLj2vSNs0OOyevtzcvsPp0v7x5m03lqQfE2ZcBKrJUpKHKu6kqALYwtc6sYryw1YEUuS8gVCKks1LxgmFNUtshLgQjZmFzu726D_-wwtnrlu9D0LzVkUjLKoNi15L5lg48xYK2ta03rfNMG49aaUb0zpH8M6Z0hfTDUo_AH3Qa3MeHrf-hiDzlE_AWkEiIXMvsG5hpysA |
| CODEN | ICLEF6 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3539589 crossref_primary_10_7746_jkros_2023_18_3_271 crossref_primary_10_1109_LSP_2023_3284893 crossref_primary_10_1002_itl2_70022 crossref_primary_10_3390_rs16224131 crossref_primary_10_1007_s40747_023_01294_y crossref_primary_10_1109_LCOMM_2025_3578081 crossref_primary_10_1007_s11760_025_04706_3 crossref_primary_10_1109_TAES_2024_3481212 crossref_primary_10_3390_s23063326 crossref_primary_10_1016_j_dsp_2022_103874 crossref_primary_10_1016_j_dsp_2025_105336 crossref_primary_10_3390_rs14215439 crossref_primary_10_3390_s23063123 crossref_primary_10_1016_j_aeue_2024_155535 crossref_primary_10_1109_TAES_2021_3079571 crossref_primary_10_1109_JSEN_2024_3466210 crossref_primary_10_1109_TSP_2022_3229630 |
| Cites_doi | 10.1109/TPAMI.2004.47 10.1109/ICCV.2015.178 10.21629/JSEE.2016.04.04 10.1109/CVPR.2016.488 10.1109/18.57199 10.1016/j.compbiomed.2007.06.003 10.1109/ICASSP.2011.5947265 10.1109/LSP.2003.821662 10.1109/7.845217 10.1109/LCOMM.2013.111413.131722 10.1007/978-1-4842-2766-4_12 10.1109/TCSVT.2009.2013491 10.1109/TAES.2018.2874139 10.1049/ip-f-2.1989.0025 10.1109/CVPR.2005.38 10.1109/MSP.2005.1550194 10.1109/LCOMM.2019.2903083 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/LCOMM.2020.2967365 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2558 |
| EndPage | 801 |
| ExternalDocumentID | 10_1109_LCOMM_2020_2967365 8966468 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Hunan Province grantid: 2019JJ10004 funderid: 10.13039/501100004735 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c295t-121bef9a70e559fd62c7acb4c915dc0a2c648b2492689c2f571e40e9c74b6ee23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528817100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-7798 |
| IngestDate | Mon Jun 30 10:15:05 EDT 2025 Sat Nov 29 03:56:02 EST 2025 Tue Nov 18 22:18:41 EST 2025 Wed Aug 27 02:35:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-121bef9a70e559fd62c7acb4c915dc0a2c648b2492689c2f571e40e9c74b6ee23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2364-4947 0000-0001-9472-279X |
| PQID | 2388101272 |
| PQPubID | 85419 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_2388101272 ieee_primary_8966468 crossref_citationtrail_10_1109_LCOMM_2020_2967365 crossref_primary_10_1109_LCOMM_2020_2967365 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE communications letters |
| PublicationTitleAbbrev | COML |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref20 ref11 ref22 ref10 ref2 ref1 ref17 ref16 ref8 ref7 wiley (ref13) 1982 ref9 ref4 ref3 ref6 dabov (ref5) 2007 wiley (ref21) 2006 yang (ref18) 2016 rasmus (ref19) 2015 |
| References_xml | – ident: ref4 doi: 10.1109/TPAMI.2004.47 – ident: ref17 doi: 10.1109/ICCV.2015.178 – ident: ref12 doi: 10.21629/JSEE.2016.04.04 – ident: ref20 doi: 10.1109/CVPR.2016.488 – ident: ref7 doi: 10.1109/18.57199 – ident: ref1 doi: 10.1016/j.compbiomed.2007.06.003 – ident: ref11 doi: 10.1109/ICASSP.2011.5947265 – ident: ref10 doi: 10.1109/LSP.2003.821662 – start-page: 250 year: 1982 ident: ref13 publication-title: Electronic Intelligence The Analysis of Radar Signals – ident: ref15 doi: 10.1109/7.845217 – ident: ref2 doi: 10.1109/LCOMM.2013.111413.131722 – ident: ref22 doi: 10.1007/978-1-4842-2766-4_12 – ident: ref6 doi: 10.1109/TCSVT.2009.2013491 – ident: ref16 doi: 10.1109/TAES.2018.2874139 – start-page: 145 year: 2007 ident: ref5 article-title: Video denoising by sparse 3D transform-domain collaborative filtering publication-title: Proc 15th Eur Signal Process Conf – ident: ref14 doi: 10.1049/ip-f-2.1989.0025 – start-page: 3546 year: 2015 ident: ref19 article-title: Semi-supervised learning with ladder networks publication-title: Proc Adv Neural Inf Process Syst – year: 2006 ident: ref21 publication-title: ELINT The Interception and Analysis of Radar Signals – year: 2016 ident: ref18 article-title: Weakly-supervised disentangling with recurrent transformations for 3D view synthesis publication-title: arXiv 1601 00706 – ident: ref3 doi: 10.1109/CVPR.2005.38 – ident: ref8 doi: 10.1109/MSP.2005.1550194 – ident: ref9 doi: 10.1109/LCOMM.2019.2903083 |
| SSID | ssj0008251 |
| Score | 2.4111893 |
| Snippet | There are many cases in which the noise corrupts the signals in a significant manner. To better analyze these signals, the noise must be removed from the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 797 |
| SubjectTerms | Artificial neural networks autoencoders binary coding Computer simulation Data analysis Decoding Denoising Feature extraction Noise Noise reduction Pulse repetition interval pulse streams Radar Signal denoising Signal processing Switches Task analysis TOA sequences Training |
| Title | Denoising of Radar Pulse Streams With Autoencoders |
| URI | https://ieeexplore.ieee.org/document/8966468 https://www.proquest.com/docview/2388101272 |
| Volume | 24 |
| WOSCitedRecordID | wos000528817100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library Online customDbUrl: eissn: 1558-2558 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008251 issn: 1089-7798 databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9B4kEPfqERRbODNx10ZVv3jgQlHgSJ0cht6dq3SKLMwPDvd-0G0WhMvPXQLs2vXd_37wFcaN3FxA-5K5Vx3RBJV4aCuZ4UkSdSXYgQZZtNiNEomkxwXIOrdS0MEdnkM2qboY3l60wtjausExW6uR9GG7AhhChrtdavrinBLJPpsdAYMVoVyDDs3PXvh8PCFOSszdHkMQXfhJDtqvLjKbbyZbD7v53twU6lRzq98uD3oUazA9j-wi7YAH5Ns2xqfAFOljoPUsu5M14WotAxoWj5tnCep_mL01vmmWGzNBnNh_A0uHns37pViwRXcQxy1-NeQilKwagwDVIdciWkSnyFXqAVk1yFfpRYVsAIFU8D4ZHPCJXwk5CId4-gPstmdAyOZtjVAVLEuCp0KEyQCHVi4niGAIY1wVthFquKP9y0sXiNrR3BMLY4xwbnuMK5CZfrNe8le8afsxsG2fXMCtQmtFZHE1c_2CIuNA1LTSb4ye-rTmHLfLtMsmlBPZ8v6Qw21Uc-XczP7d35BF-Iv1M |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XB2xSnU_vgm3ZLs7bpeRQvKG5TZKJvJU1OcaCrbJ2_3ybthqIIvuUhoeFLmnP_DsCx1m1M_JC7UhnXDZF0ZSiY60kReSLVhQhRttmE6PWi52e8n4PTWS0MEdnkM2qaoY3l60xNjKusFRW6uR9G87AY-D73ymqt2btrijDLdHosdEaMpiUyDFud87tutzAGOWtyNJlMwTcxZPuq_HiMrYS5Wv_f3jZgrdIknbPy6DdhjoZbsPqFX7AG_IKG2cB4A5wsdR6kliPnflIIQ8cEo-Xb2Hka5C_O2STPDJ-lyWnehsery_75tVs1SXAVxyB3Pe4llKIUjArjINUhV0KqxFfoBVoxyVXoR4nlBYxQ8TQQHvmMUAk_CYl4ewcWhtmQdsHRDNs6QIoYV4UWhQkSoU5MJM9QwLA6eFPMYlUxiJtGFq-xtSQYxhbn2OAcVzjX4WS25r3kz_hzds0gO5tZgVqHxvRo4uoXG8eFrmHJyQTf-33VESxf97uduHPTu92HFfOdMuWmAQv5aEIHsKQ-8sF4dGjv0SeCrsKa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Denoising+of+Radar+Pulse+Streams+With+Autoencoders&rft.jtitle=IEEE+communications+letters&rft.au=Li%2C+Xueqiong&rft.au=Liu%2C+Zhang-Meng&rft.au=Huang%2C+Zhitao&rft.date=2020-04-01&rft.pub=IEEE&rft.issn=1089-7798&rft.volume=24&rft.issue=4&rft.spage=797&rft.epage=801&rft_id=info:doi/10.1109%2FLCOMM.2020.2967365&rft.externalDocID=8966468 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon |