Hybrid Flow-Shop: a Memetic Algorithm Using Constraint-Based Scheduling for Efficient Search

The paper considers the hybrid flow-shop scheduling problem with multiprocessor tasks. Motivated by the computational complexity of the problem, we propose a memetic algorithm for this problem in the paper. We first describe the implementation details of a genetic algorithm, which is used in the mem...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical modelling and algorithms Ročník 8; číslo 3; s. 271 - 292
Hlavní autoři: Jouglet, Antoine, Oğuz, Ceyda, Sevaux, Marc
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.08.2009
Springer Nature B.V
Springer Verlag
Témata:
ISSN:1570-1166, 2214-2487, 1572-9214, 2214-2495
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The paper considers the hybrid flow-shop scheduling problem with multiprocessor tasks. Motivated by the computational complexity of the problem, we propose a memetic algorithm for this problem in the paper. We first describe the implementation details of a genetic algorithm, which is used in the memetic algorithm. We then propose a constraint programming based branch-and-bound algorithm to be employed as the local search engine of the memetic algorithm. Next, we present the new memetic algorithm. We lastly explain the computational experiments carried out to evaluate the performance of three algorithms (genetic algorithm, constraint programming based branch-and-bound algorithm, and memetic algorithm) in terms of both the quality of the solutions produced and the efficiency. These results demonstrate that the memetic algorithm produces better quality solutions and that it is very efficient.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1570-1166
2214-2487
1572-9214
2214-2495
DOI:10.1007/s10852-008-9101-1