A Fuzzy Inference Model to Identify the Current Industry Maturity Stage in the Transformation Process to Industry 4.0

The fourth industrial revolution has been developed and promoted unlike any other. In this regard, the measurement of achievements on every Industry IX.0 is subject to two major sources of imprecision, namely ambiguity and vagueness. In this paper, we introduce an Industry X.0 Fuzzy Inference Engine...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automation science and engineering Ročník 21; číslo 2; s. 1607 - 1622
Hlavní autoři: Gomes, Alexandre de Oliveira, Basilio, Joao C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1545-5955, 1558-3783
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The fourth industrial revolution has been developed and promoted unlike any other. In this regard, the measurement of achievements on every Industry IX.0 is subject to two major sources of imprecision, namely ambiguity and vagueness. In this paper, we introduce an Industry X.0 Fuzzy Inference Engine that, for a given industrial plant, it computes the technological footprint on Industries I1.0-I4.0; i.e., how much technology of each Industry IX.0 is present in that plant, therefore revealing its current maturity level in the transformation process to become an Industry 4.0. The model is scalable, and implements a control strategy inspired in resource allocation problems. It addresses the overlap issues common to I3.0 and I4.0, and assigns each criterion with a distinct importance. Our work stands out for bringing formal analytical methods supported by a theoretical background. To date, no work in the field has ever faced this problem as approached in the paper. Simulation results applied to hypothetical plants show the consistency and effectiveness of the proposed model. Note to Practitioners-The need for leveraging all of the technologies currently available has made industrial plants to retrofit their facilities towards Industry 4.0. In order to properly assess the current stage of this transformation process, in real-world heterogeneous plants, we should measure the implementation extent of each automation technology, while considering where they fit in the industrial timeline. Existing models overlook important features of automated systems, such as control architecture and communication protocols, that among others determine whether a plant qualifies for one or more IX.0. Thus, in this paper we propose a Fuzzy inference engine that allows a thorough assessment and treatment of information, in order to state the current maturity stage (technological footprint) of a given plant with respect to Industries I1.0-4.0. The matrices are scalable, i.e., various plants may be evaluated all together for comparative purposes, the knowledge base can be improved, and other future IX.0 may be incorporated. The use of Fuzzy set and Fuzzy logic provided a suitable framework for modeling, quantifying, and reasoning under imprecise and unclear development stages of a transition for I4.0.
AbstractList The fourth industrial revolution has been developed and promoted unlike any other. In this regard, the measurement of achievements on every Industry IX.0 is subject to two major sources of imprecision, namely ambiguity and vagueness. In this paper, we introduce an Industry X.0 Fuzzy Inference Engine that, for a given industrial plant, it computes the technological footprint on Industries I1.0–I4.0; i.e., how much technology of each Industry IX.0 is present in that plant, therefore revealing its current maturity level in the transformation process to become an Industry 4.0. The model is scalable, and implements a control strategy inspired in resource allocation problems. It addresses the overlap issues common to I3.0 and I4.0, and assigns each criterion with a distinct importance. Our work stands out for bringing formal analytical methods supported by a theoretical background. To date, no work in the field has ever faced this problem as approached in the paper. Simulation results applied to hypothetical plants show the consistency and effectiveness of the proposed model. Note to Practitioners—The need for leveraging all of the technologies currently available has made industrial plants to retrofit their facilities towards Industry 4.0. In order to properly assess the current stage of this transformation process, in real-world heterogeneous plants, we should measure the implementation extent of each automation technology, while considering where they fit in the industrial timeline. Existing models overlook important features of automated systems, such as control architecture and communication protocols, that among others determine whether a plant qualifies for one or more IX.0. Thus, in this paper we propose a Fuzzy inference engine that allows a thorough assessment and treatment of information, in order to state the current maturity stage (technological footprint) of a given plant with respect to Industries I1.0–4.0. The matrices are scalable, i.e., various plants may be evaluated all together for comparative purposes, the knowledge base can be improved, and other future IX.0 may be incorporated. The use of Fuzzy set and Fuzzy logic provided a suitable framework for modeling, quantifying, and reasoning under imprecise and unclear development stages of a transition for I4.0.
Author Basilio, Joao C.
Gomes, Alexandre de Oliveira
Author_xml – sequence: 1
  givenname: Alexandre de Oliveira
  orcidid: 0000-0002-7897-9066
  surname: Gomes
  fullname: Gomes, Alexandre de Oliveira
  email: alexandre.gomes@coppe.ufrj.br
  organization: Electrical Engineering Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
– sequence: 2
  givenname: Joao C.
  orcidid: 0000-0002-3737-0617
  surname: Basilio
  fullname: Basilio, Joao C.
  email: basilio@dee.ufrj.br
  organization: Electrical Engineering Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
BookMark eNp9kE1Lw0AQhhepoK3-AMHDgufE_cxujqX4UWhRaD2HNJnVlHa37m4O6a83bRXEg6cZmOeZGd4hGlhnAaEbSlJKSX6_HC8eUkYYTzkTjDF5hi6plDrhSvPBoRcykbmUF2gYwpoQJnROLlE7xo_tft_hqTXgwVaA566GDY4OT2uwsTEdjh-AJ63vx7Hn6jZE3-F5GVvfxA4vYvkOuLFHbOlLG4zz2zI2zuJX7yoI4bjtRxQpuULnptwEuP6uI_T2-LCcPCezl6fpZDxLKpaLmJgVUSvNMl0pqBkz3FBBVxUoxXNSEVkzpY1SUlHQUBJpTKZYDizXRuQrwfkI3Z327rz7bCHEYu1ab_uTBSdcMs0zrXtKnajKuxA8mKJq4vH_6MtmU1BSHDIuDhkXh4yL74x7k_4xd77Zlr7717k9OQ0A_OKJ4JnK-Bcx3Ymq
CODEN ITASC7
CitedBy_id crossref_primary_10_1080_0951192X_2025_2501582
crossref_primary_10_1109_TETCI_2024_3425309
crossref_primary_10_1016_j_eswa_2025_128795
crossref_primary_10_1016_j_ijpe_2025_109538
crossref_primary_10_61112_jiens_1705527
crossref_primary_10_1109_TASE_2025_3543647
crossref_primary_10_1016_j_ymssp_2025_113244
Cites_doi 10.1016/j.ifacol.2021.10.492
10.1109/TFUZZ.2021.3086224
10.1016/0020-0255(75)90036-5
10.1016/j.ijpe.2020.107883
10.1016/0165-0114(95)00185-9
10.1016/S0019-9958(65)90241-X
10.1007/s11569-016-0280-3
10.1016/S0020-7373(75)80002-2
10.1109/TASE.2022.3180525
10.1142/9789814329484_0007
10.1109/TASE.2016.2523639
10.1016/j.arcontrol.2019.06.001
10.1016/0020-0255(75)90046-8
10.1007/978-3-7908-1824-6
10.1016/0005-1098(77)90050-4
10.1109/TASE.2022.3144230
10.1016/j.procs.2015.07.010
10.1057/978-1-349-95189-5_2037
10.1080/09537287.2020.1744763
10.1007/s00170-021-07233-w
10.1109/EMR.2018.2833475
10.3390/info11070364
10.1007/978-94-015-8702-0
10.1016/S0165-0114(02)00056-8
10.1057/978-1-349-94848-2_78-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2023.3242225
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 1622
ExternalDocumentID 10_1109_TASE_2023_3242225
10043676
Genre orig-research
GrantInformation_xml – fundername: Brazilian Research Council [Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)]
  grantid: 309.652/2017-0; 436.672/2018-9
  funderid: 10.13039/501100003593
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Finance Code 001
  funderid: 10.13039/501100002322
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-fb07b8268c7ed22f3f141bce77390c05d278f77571e8ea05ff6729e298f49b433
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936301800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Mon Jun 30 04:26:35 EDT 2025
Tue Nov 18 20:48:53 EST 2025
Sat Nov 29 04:12:49 EST 2025
Wed Aug 27 02:15:02 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-fb07b8268c7ed22f3f141bce77390c05d278f77571e8ea05ff6729e298f49b433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3737-0617
0000-0002-7897-9066
PQID 3035283688
PQPubID 27623
PageCount 16
ParticipantIDs crossref_primary_10_1109_TASE_2023_3242225
ieee_primary_10043676
proquest_journals_3035283688
crossref_citationtrail_10_1109_TASE_2023_3242225
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Lichtblau (ref10) 2015
ref31
ref2
ref1
ref17
ref16
ref19
Cosenza (ref27) 2005
Commission (ref30) 2021
Kagermann (ref4) 2013
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Klir (ref18) 1995
ref28
Veza (ref11)
ref29
ref8
ref7
ref9
ref3
ref6
ref5
References_xml – ident: ref31
  doi: 10.1016/j.ifacol.2021.10.492
– ident: ref15
  doi: 10.1109/TFUZZ.2021.3086224
– ident: ref20
  doi: 10.1016/0020-0255(75)90036-5
– ident: ref14
  doi: 10.1016/j.ijpe.2020.107883
– year: 2015
  ident: ref10
  article-title: Industrie 4.0 readiness
– ident: ref25
  doi: 10.1016/0165-0114(95)00185-9
– ident: ref17
  doi: 10.1016/S0019-9958(65)90241-X
– ident: ref1
  doi: 10.1007/s11569-016-0280-3
– ident: ref24
  doi: 10.1016/S0020-7373(75)80002-2
– ident: ref5
  doi: 10.1109/TASE.2022.3180525
– ident: ref29
  doi: 10.1142/9789814329484_0007
– start-page: 1
  volume-title: Proc. 15th Int. Sci. Conf. Prod. Eng.
  ident: ref11
  article-title: Analysis of the current state of Croation manufacturing industry with regard to Industry 4.0
– ident: ref3
  doi: 10.1109/TASE.2016.2523639
– ident: ref12
  doi: 10.1016/j.arcontrol.2019.06.001
– volume-title: Fuzzy Sets and Fuzzy Logic: Theory and Applications
  year: 1995
  ident: ref18
– ident: ref21
  doi: 10.1016/0020-0255(75)90046-8
– ident: ref22
  doi: 10.1007/978-3-7908-1824-6
– ident: ref23
  doi: 10.1016/0005-1098(77)90050-4
– ident: ref6
  doi: 10.1109/TASE.2022.3144230
– volume-title: Industry 5.0: Towards a Sustainable, Human-Centric and Resilient European Industry
  year: 2021
  ident: ref30
– ident: ref28
  doi: 10.1016/j.procs.2015.07.010
– ident: ref8
  doi: 10.1057/978-1-349-95189-5_2037
– ident: ref13
  doi: 10.1080/09537287.2020.1744763
– ident: ref16
  doi: 10.1007/s00170-021-07233-w
– ident: ref2
  doi: 10.1109/EMR.2018.2833475
– year: 2005
  ident: ref27
  article-title: Brazil’s biodiesel programme
– ident: ref9
  doi: 10.3390/info11070364
– ident: ref19
  doi: 10.1007/978-94-015-8702-0
– ident: ref26
  doi: 10.1016/S0165-0114(02)00056-8
– year: 2013
  ident: ref4
  article-title: Recommendations for implementing the strategic initiative Industrie 4.0: Securing the future of German manufacturing industry; Final report of the Industrie 4.0 working group
– ident: ref7
  doi: 10.1057/978-1-349-94848-2_78-1
SSID ssj0024890
Score 2.4122849
Snippet The fourth industrial revolution has been developed and promoted unlike any other. In this regard, the measurement of achievements on every Industry IX.0 is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1607
SubjectTerms Analytical models
Automation
Companies
Engines
Footprints
Fourth Industrial Revolution
fuzzy inference systems
Fuzzy logic
Fuzzy sets
Industrial applications
Industrial plants
industrial revolution
Industry 4.0
Industry 40
Inference
Inference algorithms
Knowledge bases (artificial intelligence)
maturity model
Resource allocation
Retrofitting
Title A Fuzzy Inference Model to Identify the Current Industry Maturity Stage in the Transformation Process to Industry 4.0
URI https://ieeexplore.ieee.org/document/10043676
https://www.proquest.com/docview/3035283688
Volume 21
WOSCitedRecordID wos000936301800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46POjBnxOnU3LwJLRLfyY5DtnQg0Nwwm6lTV9kMDrZWmH7603SVAui4K2H90Lp1zbfS_K-D6FbD4Rep_KclAegCpTUd9KISUcEgSB5ngkGtdkEnUzYbMafbbO66YUBAHP4DFx9afby86Wo9FLZwDOC6TTeRbuU0rpZ61tYj5kFFU0JnIhHkd3C9AgfTIcvI1f7hLuaPvjaFrs1CRlXlR-_YjO_jI_-eWfH6NASSTyskT9BO1CcooOWvOAZqoZ4XG23G_zYdPVhbX22wOUS1w26coMVAcRWpAlbH48NftJyn4qfY8VF3wDPCxM2bZHcZYFtj4EZrUkMXdJFr-PR9P7BsTYLjvB5WDoyIzRTVQYTFHLfl4H0Qi8TQGnAiSBR7lMmKY2oBwxSEkkZK0YOPmcy5FkYBOeoUywLuEBYCJlncUjjNGWhn6rqWir-CZ4imamWou8h0jz3RFgNcm2FsUhMLUJ4oqFKNFSJhaqH7r5S3msBjr-CuxqbVmANSw_1G3QT-42uk4AYZZuYsctf0q7QvhrdHtTpo065quAa7YmPcr5e3ZjX7xPzLdcn
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS-QwFL24Kuz64Lfs-JkHn4SOSZo2yeOwOCjqIDiCb6VNb0SQjujMwvjrN0kz7oAo-NaHm7b0tM25N7nnABwzNL5OxZJSp-gSlJInZaZsYtLU0LqujMLWbEIOBur-Xt_EZvXQC4OIYfMZdv1hWMuvR2biS2WnLAimy_wHLGVCcNa2a_2X1lOhpOJJQZLpLIuLmIzq02Hv9qzrncK7nkBwb4w9Nw0FX5UPP-Mww_TXvnlv67AaqSTptdhvwAI2m7AyJzC4BZMe6U_e3qbkYtbXR7z52RMZj0jbomunxFFAEmWaSHTymJJrL_jpGDpxbPQByWMTwoZzNHfUkNhlEM42Gyi6dBvu-mfDP-dJNFpIDNdinNiKysrlGcpIrDm3qWWCVQalTDU1NKu5VFbKTDJUWNLM2txxcuRaWaErkaY7sNiMGvwNxBhbV7mQeVkqwUuXX1vHQJE5mll6MfoO0NlzL0xUIfdmGE9FyEaoLjxUhYeqiFB14OR9yHMrwfFV8LbHZi6whaUD-zN0i_iVvhYpDdo2uVK7nww7gp_nw-ur4upicLkHv9yV4radfVgcv0zwAJbN3_Hj68theBX_AU0E2m4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fuzzy+Inference+Model+to+Identify+the+Current+Industry+Maturity+Stage+in+the+Transformation+Process+to+Industry+4.0&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=de+Oliveira+Gomes%2C+Alexandre&rft.au=Basilio%2C+Joao+C&rft.date=2024-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=21&rft.issue=2&rft.spage=1607&rft_id=info:doi/10.1109%2FTASE.2023.3242225&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon