A Fuzzy Inference Model to Identify the Current Industry Maturity Stage in the Transformation Process to Industry 4.0
The fourth industrial revolution has been developed and promoted unlike any other. In this regard, the measurement of achievements on every Industry IX.0 is subject to two major sources of imprecision, namely ambiguity and vagueness. In this paper, we introduce an Industry X.0 Fuzzy Inference Engine...
Uloženo v:
| Vydáno v: | IEEE transactions on automation science and engineering Ročník 21; číslo 2; s. 1607 - 1622 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-5955, 1558-3783 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The fourth industrial revolution has been developed and promoted unlike any other. In this regard, the measurement of achievements on every Industry IX.0 is subject to two major sources of imprecision, namely ambiguity and vagueness. In this paper, we introduce an Industry X.0 Fuzzy Inference Engine that, for a given industrial plant, it computes the technological footprint on Industries I1.0-I4.0; i.e., how much technology of each Industry IX.0 is present in that plant, therefore revealing its current maturity level in the transformation process to become an Industry 4.0. The model is scalable, and implements a control strategy inspired in resource allocation problems. It addresses the overlap issues common to I3.0 and I4.0, and assigns each criterion with a distinct importance. Our work stands out for bringing formal analytical methods supported by a theoretical background. To date, no work in the field has ever faced this problem as approached in the paper. Simulation results applied to hypothetical plants show the consistency and effectiveness of the proposed model. Note to Practitioners-The need for leveraging all of the technologies currently available has made industrial plants to retrofit their facilities towards Industry 4.0. In order to properly assess the current stage of this transformation process, in real-world heterogeneous plants, we should measure the implementation extent of each automation technology, while considering where they fit in the industrial timeline. Existing models overlook important features of automated systems, such as control architecture and communication protocols, that among others determine whether a plant qualifies for one or more IX.0. Thus, in this paper we propose a Fuzzy inference engine that allows a thorough assessment and treatment of information, in order to state the current maturity stage (technological footprint) of a given plant with respect to Industries I1.0-4.0. The matrices are scalable, i.e., various plants may be evaluated all together for comparative purposes, the knowledge base can be improved, and other future IX.0 may be incorporated. The use of Fuzzy set and Fuzzy logic provided a suitable framework for modeling, quantifying, and reasoning under imprecise and unclear development stages of a transition for I4.0. |
|---|---|
| AbstractList | The fourth industrial revolution has been developed and promoted unlike any other. In this regard, the measurement of achievements on every Industry IX.0 is subject to two major sources of imprecision, namely ambiguity and vagueness. In this paper, we introduce an Industry X.0 Fuzzy Inference Engine that, for a given industrial plant, it computes the technological footprint on Industries I1.0–I4.0; i.e., how much technology of each Industry IX.0 is present in that plant, therefore revealing its current maturity level in the transformation process to become an Industry 4.0. The model is scalable, and implements a control strategy inspired in resource allocation problems. It addresses the overlap issues common to I3.0 and I4.0, and assigns each criterion with a distinct importance. Our work stands out for bringing formal analytical methods supported by a theoretical background. To date, no work in the field has ever faced this problem as approached in the paper. Simulation results applied to hypothetical plants show the consistency and effectiveness of the proposed model. Note to Practitioners—The need for leveraging all of the technologies currently available has made industrial plants to retrofit their facilities towards Industry 4.0. In order to properly assess the current stage of this transformation process, in real-world heterogeneous plants, we should measure the implementation extent of each automation technology, while considering where they fit in the industrial timeline. Existing models overlook important features of automated systems, such as control architecture and communication protocols, that among others determine whether a plant qualifies for one or more IX.0. Thus, in this paper we propose a Fuzzy inference engine that allows a thorough assessment and treatment of information, in order to state the current maturity stage (technological footprint) of a given plant with respect to Industries I1.0–4.0. The matrices are scalable, i.e., various plants may be evaluated all together for comparative purposes, the knowledge base can be improved, and other future IX.0 may be incorporated. The use of Fuzzy set and Fuzzy logic provided a suitable framework for modeling, quantifying, and reasoning under imprecise and unclear development stages of a transition for I4.0. |
| Author | Basilio, Joao C. Gomes, Alexandre de Oliveira |
| Author_xml | – sequence: 1 givenname: Alexandre de Oliveira orcidid: 0000-0002-7897-9066 surname: Gomes fullname: Gomes, Alexandre de Oliveira email: alexandre.gomes@coppe.ufrj.br organization: Electrical Engineering Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil – sequence: 2 givenname: Joao C. orcidid: 0000-0002-3737-0617 surname: Basilio fullname: Basilio, Joao C. email: basilio@dee.ufrj.br organization: Electrical Engineering Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil |
| BookMark | eNp9kE1Lw0AQhhepoK3-AMHDgufE_cxujqX4UWhRaD2HNJnVlHa37m4O6a83bRXEg6cZmOeZGd4hGlhnAaEbSlJKSX6_HC8eUkYYTzkTjDF5hi6plDrhSvPBoRcykbmUF2gYwpoQJnROLlE7xo_tft_hqTXgwVaA566GDY4OT2uwsTEdjh-AJ63vx7Hn6jZE3-F5GVvfxA4vYvkOuLFHbOlLG4zz2zI2zuJX7yoI4bjtRxQpuULnptwEuP6uI_T2-LCcPCezl6fpZDxLKpaLmJgVUSvNMl0pqBkz3FBBVxUoxXNSEVkzpY1SUlHQUBJpTKZYDizXRuQrwfkI3Z327rz7bCHEYu1ab_uTBSdcMs0zrXtKnajKuxA8mKJq4vH_6MtmU1BSHDIuDhkXh4yL74x7k_4xd77Zlr7717k9OQ0A_OKJ4JnK-Bcx3Ymq |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_1080_0951192X_2025_2501582 crossref_primary_10_1109_TETCI_2024_3425309 crossref_primary_10_1016_j_eswa_2025_128795 crossref_primary_10_1016_j_ijpe_2025_109538 crossref_primary_10_61112_jiens_1705527 crossref_primary_10_1109_TASE_2025_3543647 crossref_primary_10_1016_j_ymssp_2025_113244 |
| Cites_doi | 10.1016/j.ifacol.2021.10.492 10.1109/TFUZZ.2021.3086224 10.1016/0020-0255(75)90036-5 10.1016/j.ijpe.2020.107883 10.1016/0165-0114(95)00185-9 10.1016/S0019-9958(65)90241-X 10.1007/s11569-016-0280-3 10.1016/S0020-7373(75)80002-2 10.1109/TASE.2022.3180525 10.1142/9789814329484_0007 10.1109/TASE.2016.2523639 10.1016/j.arcontrol.2019.06.001 10.1016/0020-0255(75)90046-8 10.1007/978-3-7908-1824-6 10.1016/0005-1098(77)90050-4 10.1109/TASE.2022.3144230 10.1016/j.procs.2015.07.010 10.1057/978-1-349-95189-5_2037 10.1080/09537287.2020.1744763 10.1007/s00170-021-07233-w 10.1109/EMR.2018.2833475 10.3390/info11070364 10.1007/978-94-015-8702-0 10.1016/S0165-0114(02)00056-8 10.1057/978-1-349-94848-2_78-1 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TASE.2023.3242225 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 1622 |
| ExternalDocumentID | 10_1109_TASE_2023_3242225 10043676 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Brazilian Research Council [Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)] grantid: 309.652/2017-0; 436.672/2018-9 funderid: 10.13039/501100003593 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Finance Code 001 funderid: 10.13039/501100002322 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-fb07b8268c7ed22f3f141bce77390c05d278f77571e8ea05ff6729e298f49b433 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936301800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Mon Jun 30 04:26:35 EDT 2025 Tue Nov 18 20:48:53 EST 2025 Sat Nov 29 04:12:49 EST 2025 Wed Aug 27 02:15:02 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-fb07b8268c7ed22f3f141bce77390c05d278f77571e8ea05ff6729e298f49b433 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3737-0617 0000-0002-7897-9066 |
| PQID | 3035283688 |
| PQPubID | 27623 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TASE_2023_3242225 ieee_primary_10043676 proquest_journals_3035283688 crossref_citationtrail_10_1109_TASE_2023_3242225 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 Lichtblau (ref10) 2015 ref31 ref2 ref1 ref17 ref16 ref19 Cosenza (ref27) 2005 Commission (ref30) 2021 Kagermann (ref4) 2013 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Klir (ref18) 1995 ref28 Veza (ref11) ref29 ref8 ref7 ref9 ref3 ref6 ref5 |
| References_xml | – ident: ref31 doi: 10.1016/j.ifacol.2021.10.492 – ident: ref15 doi: 10.1109/TFUZZ.2021.3086224 – ident: ref20 doi: 10.1016/0020-0255(75)90036-5 – ident: ref14 doi: 10.1016/j.ijpe.2020.107883 – year: 2015 ident: ref10 article-title: Industrie 4.0 readiness – ident: ref25 doi: 10.1016/0165-0114(95)00185-9 – ident: ref17 doi: 10.1016/S0019-9958(65)90241-X – ident: ref1 doi: 10.1007/s11569-016-0280-3 – ident: ref24 doi: 10.1016/S0020-7373(75)80002-2 – ident: ref5 doi: 10.1109/TASE.2022.3180525 – ident: ref29 doi: 10.1142/9789814329484_0007 – start-page: 1 volume-title: Proc. 15th Int. Sci. Conf. Prod. Eng. ident: ref11 article-title: Analysis of the current state of Croation manufacturing industry with regard to Industry 4.0 – ident: ref3 doi: 10.1109/TASE.2016.2523639 – ident: ref12 doi: 10.1016/j.arcontrol.2019.06.001 – volume-title: Fuzzy Sets and Fuzzy Logic: Theory and Applications year: 1995 ident: ref18 – ident: ref21 doi: 10.1016/0020-0255(75)90046-8 – ident: ref22 doi: 10.1007/978-3-7908-1824-6 – ident: ref23 doi: 10.1016/0005-1098(77)90050-4 – ident: ref6 doi: 10.1109/TASE.2022.3144230 – volume-title: Industry 5.0: Towards a Sustainable, Human-Centric and Resilient European Industry year: 2021 ident: ref30 – ident: ref28 doi: 10.1016/j.procs.2015.07.010 – ident: ref8 doi: 10.1057/978-1-349-95189-5_2037 – ident: ref13 doi: 10.1080/09537287.2020.1744763 – ident: ref16 doi: 10.1007/s00170-021-07233-w – ident: ref2 doi: 10.1109/EMR.2018.2833475 – year: 2005 ident: ref27 article-title: Brazil’s biodiesel programme – ident: ref9 doi: 10.3390/info11070364 – ident: ref19 doi: 10.1007/978-94-015-8702-0 – ident: ref26 doi: 10.1016/S0165-0114(02)00056-8 – year: 2013 ident: ref4 article-title: Recommendations for implementing the strategic initiative Industrie 4.0: Securing the future of German manufacturing industry; Final report of the Industrie 4.0 working group – ident: ref7 doi: 10.1057/978-1-349-94848-2_78-1 |
| SSID | ssj0024890 |
| Score | 2.4122849 |
| Snippet | The fourth industrial revolution has been developed and promoted unlike any other. In this regard, the measurement of achievements on every Industry IX.0 is... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1607 |
| SubjectTerms | Analytical models Automation Companies Engines Footprints Fourth Industrial Revolution fuzzy inference systems Fuzzy logic Fuzzy sets Industrial applications Industrial plants industrial revolution Industry 4.0 Industry 40 Inference Inference algorithms Knowledge bases (artificial intelligence) maturity model Resource allocation Retrofitting |
| Title | A Fuzzy Inference Model to Identify the Current Industry Maturity Stage in the Transformation Process to Industry 4.0 |
| URI | https://ieeexplore.ieee.org/document/10043676 https://www.proquest.com/docview/3035283688 |
| Volume | 21 |
| WOSCitedRecordID | wos000936301800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA1u-KAPXidOp-TBJ6Fbml6SPg7ZUNAhOGFvpU2-yGC0souw_XqTNNOCKPjWhy-h9CT9Ti7fOQjdmCRAAxF5NBfUCzOpPC5j6uWgdHr2pUba6sw-stGITybJsytWt7UwAGAvn0HXPNqzfFmKldkq6_lWMJ3FDdRgjFXFWt_CetxuqBhK4EVJFLkjTJ8kvXH_ZdA1PuFdQx-oscWuJSHrqvLjV2zzy_Dwn292hA4ckcT9CvljtAPFCdqvyQueolUfD1ebzRo_bKv6sLE-m-FliasCXbXGmgBiJ9KEnY_HGj8ZuU_Nz7Hmom-Ap4UNG9dIbllgV2Nge9s2DLukhV6Hg_HdvedsFjxBk3DpqZywXK8yuGAgKVWB0iDlAhgLEiJIJCnjirGI-cAhI5FSsWbkQBOuwiQPg-AMNYuygHOEQYIwDEGK2Oh4Zbmi3IdcBpkeEkBJG5Htd0-F0yA3Vhiz1K5FSJIaqFIDVeqgaqPbrybvlQDHX8Etg00tsIKljTpbdFM3RxdpQKyyTcz5xS_NLtGe7t1d1Omg5nK-giu0Kz6W08X82g6_T0zF1zM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XBuzivefBJ6Jaml6SPQxwOtyE4YW9lTU5kIJ3oJsxfb5JmOhAF3_pwkpZ-ac-Xy_k-gEubBFgkk4AVkgXxUOlAqJQFBWqTnkNlkHY6sx3e64nBILv3xequFgYR3eEzrNtLt5evxnJql8oaoRNM5-kyrCZxzMKqXOtbWk-4JRVLCoIkSxK_iRnSrNFvPtzUrVN43RIIZo2xF9KQ81X58TN2Gaa1_c9n24EtTyVJs8J-F5aw3IPNBYHBfZg2SWv68TEj7XldH7HmZ89kMiZVia6eEUMBiZdpIt7JY0a6VvDTMHRi2OgTklHpwvoLNHdcEl9l4HqbN4zr9AAeWzf969vAGy0EkmXxJNAF5YWZZwjJUTGmI21gKiRyHmVU0kQxLjTnCQ9R4JAmWqeGkyPLhI6zIo6iQ1gpxyUeAUGF0nIEJVOr5DUsNBMhFioamkGBjNaAzt97Lr0KuTXDeM7dbIRmuYUqt1DlHqoaXH01eakkOP4KPrDYLARWsNTgdI5u7r_StzyiTtsmFeL4l2YXsH7b73byTrt3dwIb5k7-2M4prExep3gGa_J9Mnp7PXdD8ROma9p6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fuzzy+Inference+Model+to+Identify+the+Current+Industry+Maturity+Stage+in+the+Transformation+Process+to+Industry+4.0&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Gomes%2C+Alexandre+de+Oliveira&rft.au=Basilio%2C+Joao+C.&rft.date=2024-04-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=21&rft.issue=2&rft.spage=1607&rft.epage=1622&rft_id=info:doi/10.1109%2FTASE.2023.3242225&rft.externalDocID=10043676 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |