svm_friction: A Python based software for calculating, data analysis and modeling the coefficient of friction of aluminum metal matrix composites using support vector regression
Uložené v:
| Vydané v: | Software impacts Ročník 17; s. 100561 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
01.09.2023
|
| ISSN: | 2665-9638, 2665-9638 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| ArticleNumber | 100561 |
|---|---|
| Author | Kolev, Mihail |
| Author_xml | – sequence: 1 givenname: Mihail orcidid: 0000-0002-5226-4759 surname: Kolev fullname: Kolev, Mihail |
| BookMark | eNp9kMFO3DAQhi1EJSjwBFzmAbqLHSfeLDeEKCAh0UM5RxNnDF7FceRxaPexeMMmpZVQDz3Nrxl9_6_5P4vDIQ4kxLmSayWVudit2YcR14Us9LyRlVEH4rgwplptja4PP-gjcca8k1IWlVLK1MfijV9D45K32cfhEq7g2z6_xAFaZOqAo8s_MBG4mMBib6cesx-ev0CHGQEH7PfseRYdhNhRP98gvxDYSM5562nIEB38DVg09lPwwxQgUMYeAubkf85AGCP7TAwTLy48jWNMGV7J5jk80XMi5tnjVHxy2DOd_Zkn4unrzffru9XD4-399dXDyhbbMq-cUWQ2GqkkI_XGllTUuisraVpCW1Z2o8rS1V1baMTCdq12td4qlO1GGepKfSL0u69NkTmRa8bkA6Z9o2SzFN_smt_FN0vxzXvxM7X9h7I-4_J7Tuj7_7K_AP35kyU |
| CitedBy_id | crossref_primary_10_3390_machines12090638 |
| Cites_doi | 10.1016/j.simpa.2023.100520 10.1016/j.msea.2022.144014 10.3390/lubricants10020025 10.1016/j.matpr.2017.12.188 10.1016/j.triboint.2021.107065 10.1016/j.jmapro.2020.05.042 10.1016/j.eswa.2010.07.119 10.1016/j.apacoust.2022.108839 10.1016/j.apt.2020.12.024 10.1016/j.jmapro.2020.09.010 10.1016/j.matpr.2019.11.083 10.1115/1.4036350 10.1016/j.engappai.2020.103966 10.1016/j.ceramint.2020.09.083 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.simpa.2023.100561 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2665-9638 |
| ExternalDocumentID | 10_1016_j_simpa_2023_100561 |
| GroupedDBID | 0R~ AAEDW AALRI AAXUO AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AEXQZ AFJKZ AFPUW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP CITATION EBS EJD FDB M41 M~E ROL |
| ID | FETCH-LOGICAL-c294t-f61e673ae4e6037c4e283d4506beac45c7144f8db23aa2cdb3f8391a0b716ed43 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001063714500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2665-9638 |
| IngestDate | Thu Nov 20 00:46:40 EST 2025 Tue Nov 18 21:56:15 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c294t-f61e673ae4e6037c4e283d4506beac45c7144f8db23aa2cdb3f8391a0b716ed43 |
| ORCID | 0000-0002-5226-4759 |
| OpenAccessLink | http://www.softwareimpacts.com/article/S2665963823000982/pdf |
| ParticipantIDs | crossref_primary_10_1016_j_simpa_2023_100561 crossref_citationtrail_10_1016_j_simpa_2023_100561 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-00 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Software impacts |
| PublicationYear | 2023 |
| References | Kumar Yadav (10.1016/j.simpa.2023.100561_b5) 2020; 21 Van Craen (10.1016/j.simpa.2023.100561_b12) 2022; 14 Kankar (10.1016/j.simpa.2023.100561_b13) 2011; 38 Chak (10.1016/j.simpa.2023.100561_b1) 2020; 56 Kumar (10.1016/j.simpa.2023.100561_b6) 2020; 33 Kolev (10.1016/j.simpa.2023.100561_b11) 2023 Mian (10.1016/j.simpa.2023.100561_b18) 2022; 195 Wei (10.1016/j.simpa.2023.100561_b17) 2020; 96 Samal (10.1016/j.simpa.2023.100561_b2) 2020; 59 Schwarz (10.1016/j.simpa.2023.100561_b8) 2022; 10 Wu (10.1016/j.simpa.2023.100561_b9) 2017; 139 Kolev (10.1016/j.simpa.2023.100561_b14) 2023 Li (10.1016/j.simpa.2023.100561_b3) 2022; 856 Kolev (10.1016/j.simpa.2023.100561_b15) 2023 Vijaya Bhaskar (10.1016/j.simpa.2023.100561_b7) 2018; 5 Aydin (10.1016/j.simpa.2023.100561_b10) 2021; 32 Maleki (10.1016/j.simpa.2023.100561_b4) 2021; 47 Hasan (10.1016/j.simpa.2023.100561_b16) 2021; 161 |
| References_xml | – year: 2023 ident: 10.1016/j.simpa.2023.100561_b11 article-title: COF-RF-Tool: A Python software for predicting the coefficient of friction of open-cell AlSi10Mg-SiC composites using random forest model publication-title: Softw. Impacts doi: 10.1016/j.simpa.2023.100520 – year: 2023 ident: 10.1016/j.simpa.2023.100561_b15 – volume: 856 year: 2022 ident: 10.1016/j.simpa.2023.100561_b3 article-title: High temperature and strain-rate response of AA2124-SiC metal matrix composites publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2022.144014 – volume: 10 start-page: 25 year: 2022 ident: 10.1016/j.simpa.2023.100561_b8 article-title: Using machine learning methods for predicting cage performance criteria in an angular contact ball bearing publication-title: Lubricants doi: 10.3390/lubricants10020025 – volume: 33 start-page: 3139 year: 2020 ident: 10.1016/j.simpa.2023.100561_b6 article-title: Experimental investigation of wear characteristics of aluminium metal matrix composites publication-title: Materials Today: Proceedings – volume: 5 start-page: 5891 year: 2018 ident: 10.1016/j.simpa.2023.100561_b7 article-title: Effect of reinforcement and wear parameters on dry sliding wear of aluminum composites - A review publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2017.12.188 – volume: 161 year: 2021 ident: 10.1016/j.simpa.2023.100561_b16 article-title: Triboinformatic modeling of dry friction and wear of aluminum base alloys using machine learning algorithms publication-title: Tribol. Int. doi: 10.1016/j.triboint.2021.107065 – volume: 56 start-page: 1059 year: 2020 ident: 10.1016/j.simpa.2023.100561_b1 article-title: A review on fabrication methods reinforcements and mechanical properties of aluminum matrix composites publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2020.05.042 – volume: 38 start-page: 1876 year: 2011 ident: 10.1016/j.simpa.2023.100561_b13 article-title: Fault diagnosis of ball bearings using machine learning methods publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.07.119 – volume: 195 year: 2022 ident: 10.1016/j.simpa.2023.100561_b18 article-title: An efficient diagnosis approach for bearing faults using sound quality metrics publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2022.108839 – volume: 32 start-page: 445 year: 2021 ident: 10.1016/j.simpa.2023.100561_b10 article-title: The investigation of the effect of particle size on wear performance of AA7075/Al2o3 composites using statistical analysis and different machine learning methods publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2020.12.024 – volume: 59 start-page: 131 year: 2020 ident: 10.1016/j.simpa.2023.100561_b2 article-title: Recent progress in aluminum metal matrix composites: A review on processing mechanical and wear properties publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2020.09.010 – volume: 21 start-page: 1537 year: 2020 ident: 10.1016/j.simpa.2023.100561_b5 article-title: Investigation of mechanical and wear behavior of Al based SiC reinforce metal matrix composite publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2019.11.083 – volume: 14 year: 2022 ident: 10.1016/j.simpa.2023.100561_b12 article-title: PLSSVM—Parallel least squares support vector machine publication-title: Softw. Impacts – year: 2023 ident: 10.1016/j.simpa.2023.100561_b14 – volume: 139 year: 2017 ident: 10.1016/j.simpa.2023.100561_b9 article-title: A comparative study on machine learning algorithms for smart manufacturing: Tool wear prediction using random forests publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4036350 – volume: 96 year: 2020 ident: 10.1016/j.simpa.2023.100561_b17 article-title: New imbalanced fault diagnosis framework based on cluster-MWMOTE and MFO-optimized LS-SVM using limited and complex bearing data publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103966 – volume: 47 start-page: 2406 year: 2021 ident: 10.1016/j.simpa.2023.100561_b4 article-title: Compressive strength and wear properties of SiC/Al6061 composites reinforced with high contents of SiC fabricated by pressure-assisted infiltration publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.09.083 |
| SSID | ssj0002511168 |
| Score | 2.244456 |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 100561 |
| Title | svm_friction: A Python based software for calculating, data analysis and modeling the coefficient of friction of aluminum metal matrix composites using support vector regression |
| Volume | 17 |
| WOSCitedRecordID | wos001063714500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2665-9638 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511168 issn: 2665-9638 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaWwoELAgGi_GkO3NKsNnESJ9xWCMQBqkoU1Fvk2A602s2u9o_lwnvwGLwhM3acBKgqeuASWZZjW5nP4_HkmzFjL_CEYbJU8zDLhAqTWhehVKIOkyznuUQDVdoMfJ_eiePj_OysOBmNfvhYmN1MNE2-3xfL_ypqrENhU-jsNcTddYoVWEah4xPFjs9_Evx6Ny_p8h_P2pgGJ98oQUBAGxY5yevNV6J7Eb8QBaTs_V1uxRNdNJA-TQm51O1FOT6iSi2MTTjR0gf8IJZKgDrunEj1c0PRlXNK_L-3fHUihZl1sLU-ifV2SfZ-sLP_CoKV-exouM3QRv7gZ-giOPu_TYsZfgtL9f_imSGtvyLmHSGrVWtoEaQhLXu3A11S5_WyGCjWyOYsvVTnO_fDxXhNsxrTkOO-9e8Ztv_Y-To-oqe6XZS2k5I6KV0nN9jNWKQFKcz333v3HZ3MIhto2c3d57Sy7MG_JjOwewYGzOlddqc9ecDUIeYeG5nmPvs5RMtLmILDClisgMcKIFZggJUjIKSARwoWNHikACIFBkiBRQ1-ACp7pIBFCjikQI8UsEiBFingkAI9Uh6wj29en756G7a3eIQqLpJNWGeRyQSXJjHZhAuVGLRodZJOsgo3_SRVAs_0da6rmEsZK13xGo32SE4qPMobnfCH7KBZNOYRg1hElZpoEWkuE5lXUsemqLmpccdWaNsesth_41K1Ke7pppVZeYWAD9lR99LSZXi5qvnj6zV_wm73i-ApO9istuYZu6V2m_P16rnF1C-Ijapz |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=svm_friction%3A+A+Python+based+software+for+calculating%2C+data+analysis+and+modeling+the+coefficient+of+friction+of+aluminum+metal+matrix+composites+using+support+vector+regression&rft.jtitle=Software+impacts&rft.au=Kolev%2C+Mihail&rft.date=2023-09-01&rft.issn=2665-9638&rft.eissn=2665-9638&rft.volume=17&rft.spage=100561&rft_id=info:doi/10.1016%2Fj.simpa.2023.100561&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_simpa_2023_100561 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2665-9638&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2665-9638&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2665-9638&client=summon |