LVP: Leverage Virtual Points in Multimodal Early Fusion for 3-D Object Detection

Due to the sparsity and occlusion of point clouds, pure point cloud detection has limited effectiveness in detecting such samples. Researchers have been actively exploring the fusion of multimodal data, attempting to address the bottleneck issue based on LiDAR. In particular, virtual points, generat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 15
Main Authors: Chen, Yidong, Cai, Guorong, Song, Ziying, Liu, Zhaoliang, Zeng, Binghui, Li, Jonathan, Wang, Zongyue
Format: Journal Article
Language:English
Published: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to the sparsity and occlusion of point clouds, pure point cloud detection has limited effectiveness in detecting such samples. Researchers have been actively exploring the fusion of multimodal data, attempting to address the bottleneck issue based on LiDAR. In particular, virtual points, generated through depth completion from front-view RGB image, offer the potential for better integration with point clouds. Nevertheless, recent approaches fuse these two modalities in the region of interest (RoI), which limits the fusion effectiveness due to the inaccurate RoI region issue in the point cloud's branch, especially in hard samples. To overcome it and unleash the potential of virtual points, while combining late fusion, we present leverage virtual point (LVP), a high-performance 3-D object detector which LVPs in early fusion to enhance the quality of RoI generation. LVP consists of three early fusion modules: virtual points painting (VPP), virtual points auxiliary (VPA), and virtual points completion (VPC) to achieve point-level fusion and global-level fusion. The integration of these modules effectively improves occlusion handling and improves the detection of distant small objects. In the KITTI benchmark, LVP achieves 85.45% 3-D mAP. As for large dataset nuScenes, we could improve the detection accuracy of large objects by compensating for errors in depth estimation. Without whistles and bells, these results establish LVP as an impressive solution for a 3-D outdoor object detection algorithm.
AbstractList Due to the sparsity and occlusion of point clouds, pure point cloud detection has limited effectiveness in detecting such samples. Researchers have been actively exploring the fusion of multimodal data, attempting to address the bottleneck issue based on LiDAR. In particular, virtual points, generated through depth completion from front-view RGB image, offer the potential for better integration with point clouds. Nevertheless, recent approaches fuse these two modalities in the region of interest (RoI), which limits the fusion effectiveness due to the inaccurate RoI region issue in the point cloud's branch, especially in hard samples. To overcome it and unleash the potential of virtual points, while combining late fusion, we present leverage virtual point (LVP), a high-performance 3-D object detector which LVPs in early fusion to enhance the quality of RoI generation. LVP consists of three early fusion modules: virtual points painting (VPP), virtual points auxiliary (VPA), and virtual points completion (VPC) to achieve point-level fusion and global-level fusion. The integration of these modules effectively improves occlusion handling and improves the detection of distant small objects. In the KITTI benchmark, LVP achieves 85.45% 3-D mAP. As for large dataset nuScenes, we could improve the detection accuracy of large objects by compensating for errors in depth estimation. Without whistles and bells, these results establish LVP as an impressive solution for a 3-D outdoor object detection algorithm.
Author Liu, Zhaoliang
Zeng, Binghui
Cai, Guorong
Song, Ziying
Li, Jonathan
Wang, Zongyue
Chen, Yidong
Author_xml – sequence: 1
  givenname: Yidong
  orcidid: 0000-0001-6839-661X
  surname: Chen
  fullname: Chen, Yidong
  email: chenyidong2022@163.com
  organization: Computer Engineering College, Jimei University, Xiamen, China
– sequence: 2
  givenname: Guorong
  orcidid: 0000-0001-8091-271X
  surname: Cai
  fullname: Cai, Guorong
  email: guorongcai@jmu.edu.cn
  organization: Office of Science and Research, Jimei University, Xiamen, China
– sequence: 3
  givenname: Ziying
  orcidid: 0000-0001-5539-2599
  surname: Song
  fullname: Song, Ziying
  email: songziying@bjtu.edu.cn
  organization: School of Computer and Information Technology, Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China
– sequence: 4
  givenname: Zhaoliang
  orcidid: 0009-0004-9791-2846
  surname: Liu
  fullname: Liu, Zhaoliang
  email: 202211810027@jmu.edu.cn
  organization: Computer Engineering College, Jimei University, Xiamen, China
– sequence: 5
  givenname: Binghui
  orcidid: 0009-0007-5851-8485
  surname: Zeng
  fullname: Zeng, Binghui
  email: zengbinghui@jmu.edu.cn
  organization: Computer Engineering College, Jimei University, Xiamen, China
– sequence: 6
  givenname: Jonathan
  orcidid: 0000-0001-7899-0049
  surname: Li
  fullname: Li, Jonathan
  email: junli@uwaterloo.ca
  organization: Department of Geography and Environmental Management and the Department of System Design Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 7
  givenname: Zongyue
  orcidid: 0000-0003-2409-7065
  surname: Wang
  fullname: Wang, Zongyue
  email: wangzongyue@jmu.edu.cn
  organization: Computer Engineering College, Jimei University, Xiamen, China
BookMark eNp9kF9LwzAUxYNMcJt-AMGHgM-dN0mTNr7J_ilUNnTutaRtIhldO9NU2Le3ZXsQH3w6cO45915-IzSo6kojdEtgQgjIh83y7X1CgYYTxolksbhAQ8J5HIAIwwEaApEioLGkV2jUNDsAEnISDdE62a4fcaK_tVOfGm-t860q8bq2lW-wrfBrW3q7r4vOnCtXHvGibWxdYVM7zIIZXmU7nXs8076TbnCNLo0qG31z1jH6WMw30-cgWS1fpk9JkFMZ-sAwk0dFqIw2JKJABOcZRHHnilwwLgRXBWfATAw5kzLSGYgCMqpoN1RUsjG6P-09uPqr1Y1Pd3Xrqu5kyggHzgUR0KWiUyp3ddM4bdLcetX_6Z2yZUog7fGlPb60x5ee8XVN8qd5cHav3PHfzt2pY7XWv_IxhEJS9gPfuntm
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3553372
crossref_primary_10_1109_JSEN_2025_3582040
Cites_doi 10.1109/CVPR52729.2023.02074
10.1109/ICCV48922.2021.00272
10.1109/CVPR52729.2023.02076
10.1109/CVPR42600.2020.01189
10.1109/TPAMI.2020.2977026
10.1109/TGRS.2023.3331893
10.1109/CVPR52729.2023.00500
10.1109/ICIP.2019.8803572
10.1109/ICCV.2019.00987
10.1109/CVPR52733.2024.01451
10.1109/CVPR52688.2022.00534
10.1109/ICCV48922.2021.00315
10.1007/978-3-031-20074-8_39
10.3390/s18103337
10.1109/CVPR42600.2020.01054
10.1007/978-3-030-58555-6_3
10.1007/978-3-030-58583-9_43
10.1109/TGRS.2023.3250229
10.1109/CVPR.2019.01298
10.1109/CVPR.2017.691
10.1109/TGRS.2022.3203163
10.1016/j.jag.2021.102406
10.1109/ICRA48506.2021.9561035
10.1109/CVPR.2012.6248074
10.1109/TGRS.2023.3271020
10.1109/CVPR52688.2022.01838
10.1109/CVPR42600.2020.01105
10.1609/aaai.v37i3.25380
10.1109/CVPR46437.2021.01426
10.1109/CVPR52729.2023.01681
10.1109/ICCV.2019.00667
10.1109/TITS.2021.3133476
10.1109/CVPR.2015.7298655
10.1109/CVPR46437.2021.01161
10.1007/978-3-031-72998-0_13
10.1109/CVPR52729.2023.00503
10.1109/CVPR52733.2024.01425
10.1609/aaai.v33i01.33019267
10.1109/CVPR42600.2020.00252
10.1109/CVPR52729.2023.00897
10.1609/aaai.v36i3.20194
10.1109/CVPR52729.2023.01296
10.1109/CVPR42600.2020.00466
10.1609/aaai.v35i2.16207
10.1109/CVPRW50498.2020.00109
10.1109/CVPR.2018.00472
10.1109/ICCV51070.2023.00575
10.1109/CVPR52688.2022.00535
10.1007/978-3-030-58568-6_12
10.1109/TGRS.2022.3174483
10.1109/TITS.2024.3357841
10.1109/CVPR52733.2024.01418
10.1609/aaai.v38i3.28016
10.1609/aaai.v34i07.6837
10.1109/CVPR.2019.00086
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3519386
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Libary (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 15
ExternalDocumentID 10_1109_TGRS_2024_3519386
10804692
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42371457; 42301468
  funderid: 10.13039/501100001809
– fundername: Key Project of Natural Science Foundation of Fujian Province, China
  grantid: 2022J02045
– fundername: Natural Science Foundation of Xiamen, China
  grantid: 3502Z20227048; 3502Z20227049
– fundername: Natural Science Foundation of Fujian Province, China
  grantid: 2022J01337; 2022J01819; 2023J01801; 2023J01799; 2022J05157; 2022J011394
– fundername: Open Competition for Innovative Projects of Xiamen, China
  grantid: 3502Z20231038
– fundername: Science and Technology Program of Xiamen, China
  grantid: 2022CXY0302
  funderid: 10.13039/501100018556
– fundername: Start-Up Fund of Jimei University
  grantid: ZQ2022031
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
AARMG
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-f3fc7d4afef17201655b0783fc6c635665ad5303f80c3997eb06d0b2a2356a293
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001386444900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 10:20:32 EDT 2025
Sat Nov 29 06:53:17 EST 2025
Tue Nov 18 21:35:27 EST 2025
Wed Nov 19 08:27:09 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-f3fc7d4afef17201655b0783fc6c635665ad5303f80c3997eb06d0b2a2356a293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5539-2599
0009-0007-5851-8485
0000-0001-8091-271X
0000-0001-7899-0049
0000-0001-6839-661X
0000-0003-2409-7065
0009-0004-9791-2846
PQID 3150556160
PQPubID 85465
PageCount 15
ParticipantIDs ieee_primary_10804692
proquest_journals_3150556160
crossref_citationtrail_10_1109_TGRS_2024_3519386
crossref_primary_10_1109_TGRS_2024_3519386
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref53
ref52
ref11
ref55
ref10
ref54
Yin (ref14); 34
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref13
  doi: 10.1109/CVPR52729.2023.02074
– ident: ref55
  doi: 10.1109/ICCV48922.2021.00272
– ident: ref30
  doi: 10.1109/CVPR52729.2023.02076
– ident: ref41
  doi: 10.1109/CVPR42600.2020.01189
– ident: ref21
  doi: 10.1109/TPAMI.2020.2977026
– ident: ref8
  doi: 10.1109/TGRS.2023.3331893
– ident: ref29
  doi: 10.1109/CVPR52729.2023.00500
– ident: ref52
  doi: 10.1109/ICIP.2019.8803572
– ident: ref34
  doi: 10.1109/ICCV.2019.00987
– ident: ref9
  doi: 10.1109/CVPR52733.2024.01451
– ident: ref12
  doi: 10.1109/CVPR52688.2022.00534
– ident: ref32
  doi: 10.1109/ICCV48922.2021.00315
– ident: ref33
  doi: 10.1007/978-3-031-20074-8_39
– ident: ref26
  doi: 10.3390/s18103337
– ident: ref36
  doi: 10.1109/CVPR42600.2020.01054
– ident: ref43
  doi: 10.1007/978-3-030-58555-6_3
– ident: ref53
  doi: 10.1007/978-3-030-58583-9_43
– ident: ref5
  doi: 10.1109/TGRS.2023.3250229
– ident: ref27
  doi: 10.1109/CVPR.2019.01298
– ident: ref16
  doi: 10.1109/CVPR.2017.691
– ident: ref2
  doi: 10.1109/TGRS.2022.3203163
– ident: ref22
  doi: 10.1016/j.jag.2021.102406
– ident: ref47
  doi: 10.1109/ICRA48506.2021.9561035
– volume: 34
  start-page: 16494
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. (NIPS)
  ident: ref14
  article-title: Multimodal virtual point 3D detection
– ident: ref46
  doi: 10.1109/CVPR.2012.6248074
– ident: ref7
  doi: 10.1109/TGRS.2023.3271020
– ident: ref24
  doi: 10.1109/CVPR52688.2022.01838
– ident: ref23
  doi: 10.1109/CVPR42600.2020.01105
– ident: ref31
  doi: 10.1609/aaai.v37i3.25380
– ident: ref19
  doi: 10.1109/CVPR46437.2021.01426
– ident: ref45
  doi: 10.1109/CVPR52729.2023.01681
– ident: ref48
  doi: 10.1109/ICCV.2019.00667
– ident: ref42
  doi: 10.1109/TITS.2021.3133476
– ident: ref49
  doi: 10.1109/CVPR.2015.7298655
– ident: ref18
  doi: 10.1109/CVPR46437.2021.01161
– ident: ref1
  doi: 10.1007/978-3-031-72998-0_13
– ident: ref39
  doi: 10.1109/CVPR52729.2023.00503
– ident: ref3
  doi: 10.1109/CVPR52733.2024.01425
– ident: ref51
  doi: 10.1609/aaai.v33i01.33019267
– ident: ref38
  doi: 10.1109/CVPR42600.2020.00252
– ident: ref40
  doi: 10.1109/CVPR52729.2023.00897
– ident: ref37
  doi: 10.1609/aaai.v36i3.20194
– ident: ref28
  doi: 10.1109/CVPR52729.2023.01296
– ident: ref44
  doi: 10.1109/CVPR42600.2020.00466
– ident: ref35
  doi: 10.1609/aaai.v35i2.16207
– ident: ref50
  doi: 10.1109/CVPRW50498.2020.00109
– ident: ref25
  doi: 10.1109/CVPR.2018.00472
– ident: ref17
  doi: 10.1109/ICCV51070.2023.00575
– ident: ref56
  doi: 10.1109/CVPR52688.2022.00535
– ident: ref15
  doi: 10.1007/978-3-030-58568-6_12
– ident: ref6
  doi: 10.1109/TGRS.2022.3174483
– ident: ref4
  doi: 10.1109/TITS.2024.3357841
– ident: ref10
  doi: 10.1109/CVPR52733.2024.01418
– ident: ref11
  doi: 10.1609/aaai.v38i3.28016
– ident: ref54
  doi: 10.1609/aaai.v34i07.6837
– ident: ref20
  doi: 10.1109/CVPR.2019.00086
SSID ssj0014517
Score 2.5100598
Snippet Due to the sparsity and occlusion of point clouds, pure point cloud detection has limited effectiveness in detecting such samples. Researchers have been...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 3-D object detection
Accuracy
Algorithms
autonomous driving
Cloud computing
early fusion
Effectiveness
Feature extraction
Geoscience and remote sensing
Laser radar
Lidar
Modules
multimodal
Object detection
Object recognition
Occlusion
Point cloud compression
Proposals
Sensory integration
Shape
Three dimensional models
Three-dimensional displays
Valproic acid
virtual points
Title LVP: Leverage Virtual Points in Multimodal Early Fusion for 3-D Object Detection
URI https://ieeexplore.ieee.org/document/10804692
https://www.proquest.com/docview/3150556160
Volume 63
WOSCitedRecordID wos001386444900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Libary (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86FPTgx5w4nZKDJ6Fblqbp6k2c08OYQ-fYraRpAgXtZOv8-30v68ZAFLyU0iZQ8tKX3_v4vUfINajdFGC49QJhrCd4GnlRx9dwkZapQCqZOkn3w8GgM5lEw5Ks7rgwxhiXfGaaeOti-elUL9BV1sJ8ODDnQONuh6FckrXWIQMRtEtutPTAiuBlCLPNotbo8eUVTEEumtiOzkfe9MYh5Lqq_FDF7nzpHf7zy47IQQkk6d1S8sdky-RVsr9RXrBKdl16p56fkGF_PLylfQP7FvQHHWczpI3Q4TTLiznNcup4uB_TFB66kse0t0A3GgVIS32vS58T9NfQrilc6lZeI2-9h9H9k1f2UvA0j0ThWd_qMBXKGguQBTlMQYIRPKulxhJ1MlBpAMeZ7TANmCU0CZMpS7ji8FIBJjgllXyamzNCQ8ESwyyGWK0wIVNCcAWwMGDaRlbxOmGrxY11WWgc-128x87gYFGM8ohRHnEpjzq5WU_5XFbZ-GtwDQWwMXC59nXSWIkwLn_EeewD4MUOoJKd_zLtguxx7Onr3CoNUilmC3NJdvRXkc1nV26PfQNkqsvR
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6IF9QHrxPnNQ8-CdUsTdvVN1HnxDqHTvGtpGkCA-1k6_z9npNVGYiCL6W0CZR86cm5fecAHKHYzVENt14gjfWkyGMvbvoaL6HlKghVmDukk6jTab68xN2KrO64MMYYl3xmTujWxfLzgR6Tq-yU8uHQnEOJOxdIKfiErvUdNJBBo2JHhx7aEaIKYjZ4fNq7fnhEY1DIE2pI5xNzeuoYcn1Vfghjd8K0Vv_5bWuwUqmS7HyC_TrMmGIDlqcKDG7Agkvw1KNN6CbP3TOWGNy5KEHYc39IxBHWHfSLcsT6BXNM3LdBjg9d0WPWGpMjjaFSy3zvkt1n5LFhl6Z0yVtFDZ5aV72Ltld1U_C0iGXpWd_qKJfKGotKC7GYgoxieFaHmorUhYHKAzzQbJNr1Foik_Ew55lQAl8q1Aq2YLYYFGYbWCR5ZrilIKuVJuIKwVCoGAZc29gqUQf-tbiprkqNU8eL19SZHDxOCY-U8EgrPOpw_D3lfVJn46_BNQJgauBk7euw9wVhWv2Ko9RHlZd6gIZ855dph7DY7t0laXLTud2FJUEdfp2TZQ9my-HY7MO8_ij7o-GB22-fLL_PGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LVP%3A+Leverage+Virtual+Points+in+Multimodal+Early+Fusion+for+3-D+Object+Detection&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Chen%2C+Yidong&rft.au=Cai%2C+Guorong&rft.au=Song%2C+Ziying&rft.au=Liu%2C+Zhaoliang&rft.date=2025&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=63&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTGRS.2024.3519386&rft.externalDocID=10804692
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon