Kernel Tensor Sparse Coding Model for Precise Crop Classification of UAV Hyperspectral Image
In this letter, a kernel tensor sparse coding model (KTSCM) is proposed for precise crop classification of unmanned aerial vehicle (UAV) hyperspectral image (HSI). Benefited from the kernel tensor representation mechanism in KTSCM, which can not only improve the linear separation but also well prese...
Uloženo v:
| Vydáno v: | IEEE geoscience and remote sensing letters Ročník 20; s. 1 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-598X, 1558-0571 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this letter, a kernel tensor sparse coding model (KTSCM) is proposed for precise crop classification of unmanned aerial vehicle (UAV) hyperspectral image (HSI). Benefited from the kernel tensor representation mechanism in KTSCM, which can not only improve the linear separation but also well preserving the spatial-spectral structures of land-covers, the discriminability of UAV HSI is greatly improved. The L1-norm based tensor sparsity makes the tensor operation in KTSCM can be equivalently converted to matrix operation, which greatly reduces the computation cost. Furthermore, the analytical solution to KTSCM allows it be well optimized with very few iterations. The performance of KTSCM is assessed on two real UAV HSIs. The experimental results indicate that KTSCM can provides rapid and accurate crop classification results with limited labeled pixels and outperforms the related counterparts. |
|---|---|
| AbstractList | In this letter, a kernel tensor sparse coding model (KTSCM) is proposed for precise crop classification of unmanned aerial vehicle (UAV) hyperspectral image (HSI). Benefiting from the kernel tensor representation mechanism in KTSCM, which can not only improve the linear separation but also preserve the spatial-spectral structures of land covers, the discriminability of UAV HSI is greatly improved. The L1-norm-based tensor sparsity makes the tensor operation in KTSCM be equivalently converted to matrix operation, which greatly reduces the computation cost. Furthermore, the analytical solution to KTSCM allows it to be well-optimized with very few iterations. The performance of KTSCM is assessed on two real UAV HSIs. The experimental results indicate that KTSCM can provide rapid and accurate crop classification results with limited labeled pixels and outperforms the related counterparts. In this letter, a kernel tensor sparse coding model (KTSCM) is proposed for precise crop classification of unmanned aerial vehicle (UAV) hyperspectral image (HSI). Benefited from the kernel tensor representation mechanism in KTSCM, which can not only improve the linear separation but also well preserving the spatial-spectral structures of land-covers, the discriminability of UAV HSI is greatly improved. The L1-norm based tensor sparsity makes the tensor operation in KTSCM can be equivalently converted to matrix operation, which greatly reduces the computation cost. Furthermore, the analytical solution to KTSCM allows it be well optimized with very few iterations. The performance of KTSCM is assessed on two real UAV HSIs. The experimental results indicate that KTSCM can provides rapid and accurate crop classification results with limited labeled pixels and outperforms the related counterparts. |
| Author | Yang, Shuyuan Yang, Lixia Zhang, Rui Jiao, Licheng Bao, Yajun |
| Author_xml | – sequence: 1 givenname: Lixia orcidid: 0000-0001-5518-9195 surname: Yang fullname: Yang, Lixia organization: School of Mathematics and Statistics, NingXia University, Yinchuan, Ningxia, China – sequence: 2 givenname: Rui surname: Zhang fullname: Zhang, Rui organization: School of Mathematics and Statistics, NingXia University, Yinchuan, Ningxia, China – sequence: 3 givenname: Yajun surname: Bao fullname: Bao, Yajun organization: School of Mathematics and Statistics, NingXia University, Yinchuan, Ningxia, China – sequence: 4 givenname: Shuyuan orcidid: 0000-0002-4796-5737 surname: Yang fullname: Yang, Shuyuan organization: School of Artificial Intelligence, Xidian University, Xi'an, Shaanxi, China – sequence: 5 givenname: Licheng orcidid: 0000-0003-3354-9617 surname: Jiao fullname: Jiao, Licheng organization: School of Artificial Intelligence, Xidian University, Xi'an, Shaanxi, China |
| BookMark | eNp9UE1LAzEQDVJBrf4AwUPA89Z87iZHKVqLFcVW8SAs2TiRyHazJtuD_95d24N48DTDvPdm3rwjNGpCAwidUjKhlOiLxexxOWGE8QnnLBeS7aFDKqXKiCzoaOiFzKRWLwfoKKUPQphQqjhEr7cQG6jxCpoUIl62JibA0_Dmm3d8F956yPXzhwjWD0AMLZ7WJiXvvDWdDw0ODj9dPuObrxZiasF20dR4vjbvcIz2nakTnOzqGD1dX62mN9nifjafXi4yy7ToMsecBkPBUstzybSqnHRC6aoSIHLBGeWVU7TShoCSvFKOEcMLx7mxVOSEj9H5dm8bw-cGUld-hE1s-pMlU0rmUlLOe1axZdkYUorgSuu7nxd6x74uKSmHKMshynKIstxF2SvpH2Ub_drEr381Z1uNB4BffKaJ7i1_A0BhgOQ |
| CODEN | IGRSBY |
| CitedBy_id | crossref_primary_10_1109_LGRS_2025_3578223 crossref_primary_10_1109_JSTARS_2024_3522318 crossref_primary_10_1109_TIE_2024_3493197 |
| Cites_doi | 10.1016/j.rse.2020.112012 10.1109/LGRS.2023.3277347 10.1109/JSTARS.2019.2921437 10.1109/TGRS.2022.3223792 10.1109/TCYB.2014.2307067 10.1109/TGRS.2011.2129595 10.1109/TGRS.2022.3228927 10.1109/TGRS.2017.2765364 10.1109/TGRS.2023.3272669 10.1109/TGRS.2021.3049292 10.1109/JSTARS.2023.3282975 10.1109/TGRS.2019.2944989 10.1109/LGRS.2017.2714184 10.1109/LGRS.2020.3005168 10.1109/TGRS.2017.2732480 10.1109/TGRS.2017.2743110 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| DOI | 10.1109/LGRS.2023.3326452 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1558-0571 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_LGRS_2023_3326452 10290960 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61906102,62361051 – fundername: Project funded by Ningxia Key Research and Development Program grantid: 2021BEG03002 |
| GroupedDBID | 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 5VS AAYXX AETIX AGSQL AIBXA CITATION EJD 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-f2f9ea1ec1c365298bf5f489bb4e4643213bf81b9a0e853b8f20a37f33ac14603 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001098751500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Mon Jun 30 08:34:54 EDT 2025 Sat Nov 29 05:54:19 EST 2025 Tue Nov 18 22:07:48 EST 2025 Wed Aug 27 02:37:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-f2f9ea1ec1c365298bf5f489bb4e4643213bf81b9a0e853b8f20a37f33ac14603 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5518-9195 0000-0002-4796-5737 0000-0003-3354-9617 |
| PQID | 2885655133 |
| PQPubID | 75725 |
| PageCount | 1 |
| ParticipantIDs | crossref_citationtrail_10_1109_LGRS_2023_3326452 proquest_journals_2885655133 crossref_primary_10_1109_LGRS_2023_3326452 ieee_primary_10290960 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE geoscience and remote sensing letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref16 ref8 ref7 ref9 ref4 ref3 ref6 ref5 (ref17) 2020 |
| References_xml | – ident: ref1 doi: 10.1016/j.rse.2020.112012 – ident: ref5 doi: 10.1109/LGRS.2023.3277347 – ident: ref3 doi: 10.1109/JSTARS.2019.2921437 – ident: ref15 doi: 10.1109/TGRS.2022.3223792 – ident: ref16 doi: 10.1109/TCYB.2014.2307067 – ident: ref7 doi: 10.1109/TGRS.2011.2129595 – ident: ref11 doi: 10.1109/TGRS.2022.3228927 – ident: ref4 doi: 10.1109/TGRS.2017.2765364 – ident: ref12 doi: 10.1109/TGRS.2023.3272669 – ident: ref2 doi: 10.1109/TGRS.2021.3049292 – volume-title: WHU-Hi: UAV-borne Hyperspectral and High Spatial Resolution (H2) Benchmark Datasets for Crop Precise Classification year: 2020 ident: ref17 – ident: ref6 doi: 10.1109/JSTARS.2023.3282975 – ident: ref13 doi: 10.1109/TGRS.2019.2944989 – ident: ref9 doi: 10.1109/LGRS.2017.2714184 – ident: ref10 doi: 10.1109/LGRS.2020.3005168 – ident: ref14 doi: 10.1109/TGRS.2017.2732480 – ident: ref8 doi: 10.1109/TGRS.2017.2743110 |
| SSID | ssj0024887 |
| Score | 2.3817563 |
| Snippet | In this letter, a kernel tensor sparse coding model (KTSCM) is proposed for precise crop classification of unmanned aerial vehicle (UAV) hyperspectral image... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Autonomous aerial vehicles Classification Coding Computation Cost analysis Crops Dictionaries Encoding Exact solutions Hyperspectral imaging Image classification Kernel Kernel tensor sparse coding Kernels Mathematical analysis precise crop classification Tensors unmanned aerial vehicle hyperspectral image Unmanned aerial vehicles |
| Title | Kernel Tensor Sparse Coding Model for Precise Crop Classification of UAV Hyperspectral Image |
| URI | https://ieeexplore.ieee.org/document/10290960 https://www.proquest.com/docview/2885655133 |
| Volume | 20 |
| WOSCitedRecordID | wos001098751500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB5UPM4X9dTj9tyTPPh00DVN0zZ5FPHHoYi4q-yDUJp0ggd726Wugv_9ZdKuehwe3FuhSVvyNTPfJJn5APa9T0HMlYm8M6kimcVZVJo0jkTlrDXIMx5kOm8v8stLNR7rqy5ZPeTCIGI4fIYDugx7-VVtH2mpzM9woYlyL8NynmdtstZrYT0V1PCIEkSpVuNuCzPm-uDi9Ho4IJ3wQeLZikzFH04oqKr8ZYqDfznZ-M8v24T1jkiywxb5T7CE0y342Gma3z9vwYfTINr7vA1359hMccJGPmStGzac-WAW2VFNbouRGNqEeerKrqjQBd1o6hkLYpl0jCggx2rHbg5v2ZmPWtvkzMa_-8cvb4x24ObkeHR0FnWqCpEVWs4jJ5zGMkYb2yRLhVbGpU4qbYxE6fmJiBPjPJnVJUfvy41ygpdJ7pKktN6s8uQzrEzrKX4Bxi2XzlDBGCdkzqsy085mMsPYVFUp8x7wxTAXtis5TsoXkyKEHlwXhExByBQdMj34_tJl1tbb-FfjHYLiTcMWhR70F2AW3ZR8KIRSnrySnM3Xd7rtwho9vV1g6cPKvHnEb7Bqn-Y_H5q98Lf9BlF00HY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED7BAJUXGNsQhQF-4AkpneM4if04VWytVqqJdVMfJkWxc9YmlaZKO6T9e3xOxkCISbxFii1H-ey772zffQCfvE9BzJWJvDOpIpnFWVSaNI5E5aw1yDMeZDovJvl0quZzfdolq4dcGEQMl89wQI_hLL-q7Q1tlfkVLjRR7sfwJJVS8DZd6760ngp6eEQKolSreXeIGXN9MDn-djYgpfBB4vmKTMUfbijoqvxljIOHOXr5n9-2DS86KskOW-xfwSNc7kCvUzW_ut2BZ8dBtvd2Fy5PsFnigs180Fo37Gzlw1lkw5ocFyM5tAXz5JWdUqkLetHUKxbkMukiUcCO1Y6dH16wkY9b2_TMxo89_u7N0R6cH32ZDUdRp6sQWaHlJnLCaSxjtLFNslRoZVzqpNLGSJSeoYg4Mc7TWV1y9N7cKCd4meQuSUrrDStPXsPWsl7iG2DccukMlYxxQua8KjPtbCYzjE1VlTLvA7_7zYXtio6T9sWiCMEH1wUhUxAyRYdMHz7_6rJqK2481HiPoPitYYtCH_bvwCy6RbkuhFKevpKgzdt_dPsIvdHs66SYjKcn7-A5jdRut-zD1qa5wffw1P7YXK-bD2Hm_QRUMdO9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+Tensor+Sparse+Coding+Model+for+Precise+Crop+Classification+of+UAV+Hyperspectral+Image&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Yang%2C+Lixia&rft.au=Zhang%2C+Rui&rft.au=Bao%2C+Yajun&rft.au=Yang%2C+Shuyuan&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1545-598X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FLGRS.2023.3326452&rft.externalDocID=10290960 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |