Kernel Tensor Sparse Coding Model for Precise Crop Classification of UAV Hyperspectral Image

In this letter, a kernel tensor sparse coding model (KTSCM) is proposed for precise crop classification of unmanned aerial vehicle (UAV) hyperspectral image (HSI). Benefited from the kernel tensor representation mechanism in KTSCM, which can not only improve the linear separation but also well prese...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE geoscience and remote sensing letters Ročník 20; s. 1
Hlavní autoři: Yang, Lixia, Zhang, Rui, Bao, Yajun, Yang, Shuyuan, Jiao, Licheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1545-598X, 1558-0571
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this letter, a kernel tensor sparse coding model (KTSCM) is proposed for precise crop classification of unmanned aerial vehicle (UAV) hyperspectral image (HSI). Benefited from the kernel tensor representation mechanism in KTSCM, which can not only improve the linear separation but also well preserving the spatial-spectral structures of land-covers, the discriminability of UAV HSI is greatly improved. The L1-norm based tensor sparsity makes the tensor operation in KTSCM can be equivalently converted to matrix operation, which greatly reduces the computation cost. Furthermore, the analytical solution to KTSCM allows it be well optimized with very few iterations. The performance of KTSCM is assessed on two real UAV HSIs. The experimental results indicate that KTSCM can provides rapid and accurate crop classification results with limited labeled pixels and outperforms the related counterparts.
AbstractList In this letter, a kernel tensor sparse coding model (KTSCM) is proposed for precise crop classification of unmanned aerial vehicle (UAV) hyperspectral image (HSI). Benefiting from the kernel tensor representation mechanism in KTSCM, which can not only improve the linear separation but also preserve the spatial-spectral structures of land covers, the discriminability of UAV HSI is greatly improved. The L1-norm-based tensor sparsity makes the tensor operation in KTSCM be equivalently converted to matrix operation, which greatly reduces the computation cost. Furthermore, the analytical solution to KTSCM allows it to be well-optimized with very few iterations. The performance of KTSCM is assessed on two real UAV HSIs. The experimental results indicate that KTSCM can provide rapid and accurate crop classification results with limited labeled pixels and outperforms the related counterparts.
In this letter, a kernel tensor sparse coding model (KTSCM) is proposed for precise crop classification of unmanned aerial vehicle (UAV) hyperspectral image (HSI). Benefited from the kernel tensor representation mechanism in KTSCM, which can not only improve the linear separation but also well preserving the spatial-spectral structures of land-covers, the discriminability of UAV HSI is greatly improved. The L1-norm based tensor sparsity makes the tensor operation in KTSCM can be equivalently converted to matrix operation, which greatly reduces the computation cost. Furthermore, the analytical solution to KTSCM allows it be well optimized with very few iterations. The performance of KTSCM is assessed on two real UAV HSIs. The experimental results indicate that KTSCM can provides rapid and accurate crop classification results with limited labeled pixels and outperforms the related counterparts.
Author Yang, Shuyuan
Yang, Lixia
Zhang, Rui
Jiao, Licheng
Bao, Yajun
Author_xml – sequence: 1
  givenname: Lixia
  orcidid: 0000-0001-5518-9195
  surname: Yang
  fullname: Yang, Lixia
  organization: School of Mathematics and Statistics, NingXia University, Yinchuan, Ningxia, China
– sequence: 2
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: School of Mathematics and Statistics, NingXia University, Yinchuan, Ningxia, China
– sequence: 3
  givenname: Yajun
  surname: Bao
  fullname: Bao, Yajun
  organization: School of Mathematics and Statistics, NingXia University, Yinchuan, Ningxia, China
– sequence: 4
  givenname: Shuyuan
  orcidid: 0000-0002-4796-5737
  surname: Yang
  fullname: Yang, Shuyuan
  organization: School of Artificial Intelligence, Xidian University, Xi'an, Shaanxi, China
– sequence: 5
  givenname: Licheng
  orcidid: 0000-0003-3354-9617
  surname: Jiao
  fullname: Jiao, Licheng
  organization: School of Artificial Intelligence, Xidian University, Xi'an, Shaanxi, China
BookMark eNp9UE1LAzEQDVJBrf4AwUPA89Z87iZHKVqLFcVW8SAs2TiRyHazJtuD_95d24N48DTDvPdm3rwjNGpCAwidUjKhlOiLxexxOWGE8QnnLBeS7aFDKqXKiCzoaOiFzKRWLwfoKKUPQphQqjhEr7cQG6jxCpoUIl62JibA0_Dmm3d8F956yPXzhwjWD0AMLZ7WJiXvvDWdDw0ODj9dPuObrxZiasF20dR4vjbvcIz2nakTnOzqGD1dX62mN9nifjafXi4yy7ToMsecBkPBUstzybSqnHRC6aoSIHLBGeWVU7TShoCSvFKOEcMLx7mxVOSEj9H5dm8bw-cGUld-hE1s-pMlU0rmUlLOe1axZdkYUorgSuu7nxd6x74uKSmHKMshynKIstxF2SvpH2Ub_drEr381Z1uNB4BffKaJ7i1_A0BhgOQ
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_LGRS_2025_3578223
crossref_primary_10_1109_JSTARS_2024_3522318
crossref_primary_10_1109_TIE_2024_3493197
Cites_doi 10.1016/j.rse.2020.112012
10.1109/LGRS.2023.3277347
10.1109/JSTARS.2019.2921437
10.1109/TGRS.2022.3223792
10.1109/TCYB.2014.2307067
10.1109/TGRS.2011.2129595
10.1109/TGRS.2022.3228927
10.1109/TGRS.2017.2765364
10.1109/TGRS.2023.3272669
10.1109/TGRS.2021.3049292
10.1109/JSTARS.2023.3282975
10.1109/TGRS.2019.2944989
10.1109/LGRS.2017.2714184
10.1109/LGRS.2020.3005168
10.1109/TGRS.2017.2732480
10.1109/TGRS.2017.2743110
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2023.3326452
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 1
ExternalDocumentID 10_1109_LGRS_2023_3326452
10290960
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61906102,62361051
– fundername: Project funded by Ningxia Key Research and Development Program
  grantid: 2021BEG03002
GroupedDBID 0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
5VS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-f2f9ea1ec1c365298bf5f489bb4e4643213bf81b9a0e853b8f20a37f33ac14603
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001098751500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Mon Jun 30 08:34:54 EDT 2025
Sat Nov 29 05:54:19 EST 2025
Tue Nov 18 22:07:48 EST 2025
Wed Aug 27 02:37:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-f2f9ea1ec1c365298bf5f489bb4e4643213bf81b9a0e853b8f20a37f33ac14603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5518-9195
0000-0002-4796-5737
0000-0003-3354-9617
PQID 2885655133
PQPubID 75725
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_LGRS_2023_3326452
proquest_journals_2885655133
crossref_primary_10_1109_LGRS_2023_3326452
ieee_primary_10290960
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref16
ref8
ref7
ref9
ref4
ref3
ref6
ref5
(ref17) 2020
References_xml – ident: ref1
  doi: 10.1016/j.rse.2020.112012
– ident: ref5
  doi: 10.1109/LGRS.2023.3277347
– ident: ref3
  doi: 10.1109/JSTARS.2019.2921437
– ident: ref15
  doi: 10.1109/TGRS.2022.3223792
– ident: ref16
  doi: 10.1109/TCYB.2014.2307067
– ident: ref7
  doi: 10.1109/TGRS.2011.2129595
– ident: ref11
  doi: 10.1109/TGRS.2022.3228927
– ident: ref4
  doi: 10.1109/TGRS.2017.2765364
– ident: ref12
  doi: 10.1109/TGRS.2023.3272669
– ident: ref2
  doi: 10.1109/TGRS.2021.3049292
– volume-title: WHU-Hi: UAV-borne Hyperspectral and High Spatial Resolution (H2) Benchmark Datasets for Crop Precise Classification
  year: 2020
  ident: ref17
– ident: ref6
  doi: 10.1109/JSTARS.2023.3282975
– ident: ref13
  doi: 10.1109/TGRS.2019.2944989
– ident: ref9
  doi: 10.1109/LGRS.2017.2714184
– ident: ref10
  doi: 10.1109/LGRS.2020.3005168
– ident: ref14
  doi: 10.1109/TGRS.2017.2732480
– ident: ref8
  doi: 10.1109/TGRS.2017.2743110
SSID ssj0024887
Score 2.3817563
Snippet In this letter, a kernel tensor sparse coding model (KTSCM) is proposed for precise crop classification of unmanned aerial vehicle (UAV) hyperspectral image...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Autonomous aerial vehicles
Classification
Coding
Computation
Cost analysis
Crops
Dictionaries
Encoding
Exact solutions
Hyperspectral imaging
Image classification
Kernel
Kernel tensor sparse coding
Kernels
Mathematical analysis
precise crop classification
Tensors
unmanned aerial vehicle hyperspectral image
Unmanned aerial vehicles
Title Kernel Tensor Sparse Coding Model for Precise Crop Classification of UAV Hyperspectral Image
URI https://ieeexplore.ieee.org/document/10290960
https://www.proquest.com/docview/2885655133
Volume 20
WOSCitedRecordID wos001098751500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB5UPM4X9dTj9tyTPPh00DVN0zZ5FPHHoYi4q-yDUJp0ggd726Wugv_9ZdKuehwe3FuhSVvyNTPfJJn5APa9T0HMlYm8M6kimcVZVJo0jkTlrDXIMx5kOm8v8stLNR7rqy5ZPeTCIGI4fIYDugx7-VVtH2mpzM9woYlyL8NynmdtstZrYT0V1PCIEkSpVuNuCzPm-uDi9Ho4IJ3wQeLZikzFH04oqKr8ZYqDfznZ-M8v24T1jkiywxb5T7CE0y342Gma3z9vwYfTINr7vA1359hMccJGPmStGzac-WAW2VFNbouRGNqEeerKrqjQBd1o6hkLYpl0jCggx2rHbg5v2ZmPWtvkzMa_-8cvb4x24ObkeHR0FnWqCpEVWs4jJ5zGMkYb2yRLhVbGpU4qbYxE6fmJiBPjPJnVJUfvy41ygpdJ7pKktN6s8uQzrEzrKX4Bxi2XzlDBGCdkzqsy085mMsPYVFUp8x7wxTAXtis5TsoXkyKEHlwXhExByBQdMj34_tJl1tbb-FfjHYLiTcMWhR70F2AW3ZR8KIRSnrySnM3Xd7rtwho9vV1g6cPKvHnEb7Bqn-Y_H5q98Lf9BlF00HY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED7BAJUXGNsQhQF-4AkpneM4if04VWytVqqJdVMfJkWxc9YmlaZKO6T9e3xOxkCISbxFii1H-ey772zffQCfvE9BzJWJvDOpIpnFWVSaNI5E5aw1yDMeZDovJvl0quZzfdolq4dcGEQMl89wQI_hLL-q7Q1tlfkVLjRR7sfwJJVS8DZd6760ngp6eEQKolSreXeIGXN9MDn-djYgpfBB4vmKTMUfbijoqvxljIOHOXr5n9-2DS86KskOW-xfwSNc7kCvUzW_ut2BZ8dBtvd2Fy5PsFnigs180Fo37Gzlw1lkw5ocFyM5tAXz5JWdUqkLetHUKxbkMukiUcCO1Y6dH16wkY9b2_TMxo89_u7N0R6cH32ZDUdRp6sQWaHlJnLCaSxjtLFNslRoZVzqpNLGSJSeoYg4Mc7TWV1y9N7cKCd4meQuSUrrDStPXsPWsl7iG2DccukMlYxxQua8KjPtbCYzjE1VlTLvA7_7zYXtio6T9sWiCMEH1wUhUxAyRYdMHz7_6rJqK2481HiPoPitYYtCH_bvwCy6RbkuhFKevpKgzdt_dPsIvdHs66SYjKcn7-A5jdRut-zD1qa5wffw1P7YXK-bD2Hm_QRUMdO9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+Tensor+Sparse+Coding+Model+for+Precise+Crop+Classification+of+UAV+Hyperspectral+Image&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Yang%2C+Lixia&rft.au=Zhang%2C+Rui&rft.au=Bao%2C+Yajun&rft.au=Yang%2C+Shuyuan&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1545-598X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FLGRS.2023.3326452&rft.externalDocID=10290960
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon