Joint Task and Data Oriented Semantic Communications: A Deep Separate Source-channel Coding Scheme

Semantic communications are expected to accomplish various semantic tasks with relatively less spectrum resource by exploiting the semantic feature of source data. To simultaneously serve both the data transmission and semantic tasks, joint data compression and semantic analysis has become pivotal i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal Jg. 11; H. 2; S. 1
Hauptverfasser: Huang, Jianhao, Li, Dongxu, Huang, Chuan, Qin, Xiaoqi, Zhang, Wei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 15.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2327-4662, 2327-4662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Semantic communications are expected to accomplish various semantic tasks with relatively less spectrum resource by exploiting the semantic feature of source data. To simultaneously serve both the data transmission and semantic tasks, joint data compression and semantic analysis has become pivotal issue in semantic communications. This paper proposes a deep separate source-channel coding (DSSCC) framework for the joint task and data oriented semantic communications (JTD-SC) and utilizes the variational autoencoder approach to solve the rate-distortion problem with semantic distortion. First, by analyzing the Bayesian model of the DSSCC framework, we derive a novel rate-distortion optimization problem via the Bayesian inference approach for general data distributions and semantic tasks. Next, for a typical application of joint image transmission and classification, we combine the variational autoencoder approach with a forward adaption scheme to effectively extract image features and adaptively learn the density information of the obtained features. Finally, an iterative training algorithm is proposed to tackle the overfitting issue of deep learning models. Simulation results reveal that the proposed scheme achieves better coding gain as well as data recovery and classification performance in most scenarios, compared to the classical compression schemes and the emerging deep joint source-channel schemes.
AbstractList Semantic communications are expected to accomplish various semantic tasks with relatively less spectrum resource by exploiting the semantic feature of source data. To simultaneously serve both the data transmission and semantic tasks, joint data compression and semantic analysis has become a pivotal issue in semantic communications. This article proposes a deep separate source-channel coding (DSSCC) framework for the joint task and data-oriented semantic communications (JTD-SCs) and utilizes the variational autoencoder approach to solve the rate-distortion problem with semantic distortion. First, by analyzing the Bayesian model of the DSSCC framework, we derive a novel rate-distortion optimization problem via the Bayesian inference approach for general data distributions and semantic tasks. Next, for a typical application of joint image transmission and classification, we combine the variational autoencoder approach with a forward adaption scheme to effectively extract image features and adaptively learn the density information of the obtained features. Finally, an iterative training algorithm is proposed to tackle the overfitting issue of deep learning models. Simulation results reveal that the proposed scheme achieves better coding gain as well as data recovery and classification performance in most scenarios, compared to the classical compression schemes and the emerging deep joint source-channel schemes.
Semantic communications are expected to accomplish various semantic tasks with relatively less spectrum resource by exploiting the semantic feature of source data. To simultaneously serve both the data transmission and semantic tasks, joint data compression and semantic analysis has become pivotal issue in semantic communications. This paper proposes a deep separate source-channel coding (DSSCC) framework for the joint task and data oriented semantic communications (JTD-SC) and utilizes the variational autoencoder approach to solve the rate-distortion problem with semantic distortion. First, by analyzing the Bayesian model of the DSSCC framework, we derive a novel rate-distortion optimization problem via the Bayesian inference approach for general data distributions and semantic tasks. Next, for a typical application of joint image transmission and classification, we combine the variational autoencoder approach with a forward adaption scheme to effectively extract image features and adaptively learn the density information of the obtained features. Finally, an iterative training algorithm is proposed to tackle the overfitting issue of deep learning models. Simulation results reveal that the proposed scheme achieves better coding gain as well as data recovery and classification performance in most scenarios, compared to the classical compression schemes and the emerging deep joint source-channel schemes.
Author Li, Dongxu
Huang, Jianhao
Huang, Chuan
Zhang, Wei
Qin, Xiaoqi
Author_xml – sequence: 1
  givenname: Jianhao
  orcidid: 0000-0003-1490-2390
  surname: Huang
  fullname: Huang, Jianhao
  organization: School of Science and Engineering and the Future Network of Intelligence Institute, Chinese University of Hong Kong, Shenzhen, China
– sequence: 2
  givenname: Dongxu
  surname: Li
  fullname: Li, Dongxu
  organization: School of Science and Engineering and the Future Network of Intelligence Institute, Chinese University of Hong Kong, Shenzhen, China
– sequence: 3
  givenname: Chuan
  orcidid: 0000-0001-5965-0823
  surname: Huang
  fullname: Huang, Chuan
  organization: School of Science and Engineering and the Future Network of Intelligence Institute, Chinese University of Hong Kong, Shenzhen, China
– sequence: 4
  givenname: Xiaoqi
  orcidid: 0000-0002-5788-0657
  surname: Qin
  fullname: Qin, Xiaoqi
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 5
  givenname: Wei
  orcidid: 0000-0002-1059-3642
  surname: Zhang
  fullname: Zhang, Wei
  organization: School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia
BookMark eNp9kMtOAjEUhhujiYg8gImLJq4He5lb3RHwAiFhAa4nnc6pFJkOtmXh21uEBXHhqifp_52__W7Qpe0sIHRHyZBSIh5n08VqyAjjQ84Ep1l6gXqMsyJJ85xdns3XaOD9hhASsYyKvIfqWWdswCvpP7G0DZ7IIPHCGbABGryEVtpgFB53bbu3RslgOuuf8AhPAHbxfiedDICX3d4pSNRaWgvbGG-M_cBLtYYWbtGVllsPg9PZR-8vz6vxWzJfvE7Ho3mimEhDAgC5lIzWJdNlmlJe1FQ3da0ypRlXTcqKXAJtdA6ZFkqVClINJZUEaJmB5n30cNy7c93XHnyoNvFVNlZWTNDYwYTIYooeU8p13jvQ1c6ZVrrvipLqYLM62KwONquTzcgUfxhlwq-K4KTZ_kveH0kTv3fWRIuMC8p_AFcZhOI
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_JIOT_2025_3564304
crossref_primary_10_1109_TCOMM_2024_3511949
crossref_primary_10_1109_JIOT_2025_3542753
crossref_primary_10_1109_JSAC_2025_3536557
crossref_primary_10_1109_TMC_2025_3564543
crossref_primary_10_1109_TWC_2024_3427675
crossref_primary_10_1109_TCOMM_2024_3364990
crossref_primary_10_3390_e27040429
crossref_primary_10_1109_COMST_2024_3416309
crossref_primary_10_1109_TCOMM_2024_3480982
crossref_primary_10_1109_JIOT_2024_3477314
crossref_primary_10_1109_TWC_2025_3554442
crossref_primary_10_1109_TCOMM_2025_3529221
crossref_primary_10_1016_j_jnca_2025_104181
Cites_doi 10.1109/TCOMM.2022.3180997
10.1109/JSAC.2021.3126087
10.1145/3474085.3475533
10.1109/ICC45041.2023.10279073
10.1109/49.848253
10.1109/MSP.2017.2765202
10.1016/j.eng.2021.11.003
10.1145/3065386
10.1145/103085.103089
10.1109/TCCN.2019.2919300
10.1109/JSTSP.2020.3034501
10.1017/CBO9780511804441
10.1109/CVPR.2016.90
10.1109/TCCN.2017.2758370
10.2352/EI.2022.34.14.COIMG-220
10.1109/JSAIT.2020.2987203
10.1109/TCSVT.2012.2221191
10.1109/30.920468
10.1109/TSP.2021.3071210
10.1007/978-3-030-04167-0_9
10.1109/ICIP40778.2020.9191247
10.1109/TSP.2018.2889951
10.1145/212094.212114
10.1145/3295748
10.1109/CVPR.2009.5206848
10.1109/MWC.2019.8752473
10.1109/CVPR.2013.57
10.1109/JSAC.2022.3180802
10.1007/978-3-7091-2945-6
10.1109/ICCV.2013.441
10.1017/CBO9780511807213
10.1109/JSAC.2016.2525418
10.1145/214762.214771
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2023.3293154
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 1
ExternalDocumentID 10_1109_JIOT_2023_3293154
10175391
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-eee6aa21b82f844137b1fdbbc5cf23cd4276ae1df6e5f9cc8ce4fe81a0e185ef3
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001153911600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Mon Jun 30 13:58:46 EDT 2025
Sat Nov 29 06:17:19 EST 2025
Tue Nov 18 21:14:41 EST 2025
Wed Aug 27 02:56:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-eee6aa21b82f844137b1fdbbc5cf23cd4276ae1df6e5f9cc8ce4fe81a0e185ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5965-0823
0000-0002-5788-0657
0000-0002-1059-3642
0000-0003-1490-2390
PQID 2912942995
PQPubID 2040421
PageCount 1
ParticipantIDs crossref_primary_10_1109_JIOT_2023_3293154
crossref_citationtrail_10_1109_JIOT_2023_3293154
proquest_journals_2912942995
ieee_primary_10175391
PublicationCentury 2000
PublicationDate 2024-01-15
PublicationDateYYYYMMDD 2024-01-15
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
Liu (ref5) 2022
ref15
ref37
ref30
ref11
ref33
ref10
ref2
Tan (ref31)
ref1
ref17
ref39
ref38
Ballé (ref9)
ref19
ref18
Zaccone (ref45) 2017
Theis (ref16) 2017
Roy (ref25) 2018
Krizhevsky (ref42) 2009
Ballé (ref14)
ref24
ref23
ref26
Kingma (ref36) 2013
ref20
ref41
ref22
ref21
ref43
ref28
ref27
Gardiner (ref32) 2009
ref29
ref8
ref7
ref4
ref3
ref6
Kingma (ref44) 2014
Ballé (ref40) 2015
References_xml – volume-title: Deep Learning With TensorFlow
  year: 2017
  ident: ref45
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Repres. (ICLR)
  ident: ref9
  article-title: End-to-end optimized image compression
– ident: ref11
  doi: 10.1109/TCOMM.2022.3180997
– ident: ref26
  doi: 10.1109/JSAC.2021.3126087
– ident: ref27
  doi: 10.1145/3474085.3475533
– ident: ref1
  doi: 10.1109/ICC45041.2023.10279073
– ident: ref10
  doi: 10.1109/49.848253
– ident: ref21
  doi: 10.1109/MSP.2017.2765202
– ident: ref3
  doi: 10.1016/j.eng.2021.11.003
– ident: ref23
  doi: 10.1145/3065386
– ident: ref8
  doi: 10.1145/103085.103089
– ident: ref20
  doi: 10.1109/TCCN.2019.2919300
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref14
  article-title: Variational image compression with a scale hyperprior
– ident: ref15
  doi: 10.1109/JSTSP.2020.3034501
– ident: ref35
  doi: 10.1017/CBO9780511804441
– ident: ref37
  doi: 10.1109/CVPR.2016.90
– ident: ref17
  doi: 10.1109/TCCN.2017.2758370
– ident: ref30
  doi: 10.2352/EI.2022.34.14.COIMG-220
– year: 2017
  ident: ref16
  article-title: Lossy image compression with compressive autoencoders
  publication-title: arXiv:1703.00395
– year: 2013
  ident: ref36
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv:1312.6114
– ident: ref18
  doi: 10.1109/JSAIT.2020.2987203
– volume-title: Stochastic Methods: A Handbook for the Natural and Social Sciences
  year: 2009
  ident: ref32
– ident: ref13
  doi: 10.1109/TCSVT.2012.2221191
– ident: ref12
  doi: 10.1109/30.920468
– start-page: 6105
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref31
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– ident: ref6
  doi: 10.1109/TSP.2021.3071210
– ident: ref28
  doi: 10.1007/978-3-030-04167-0_9
– ident: ref29
  doi: 10.1109/ICIP40778.2020.9191247
– ident: ref39
  doi: 10.1109/TSP.2018.2889951
– ident: ref41
  doi: 10.1145/212094.212114
– year: 2009
  ident: ref42
  article-title: Learning multiple layers of features from tiny images
– ident: ref24
  doi: 10.1145/3295748
– ident: ref43
  doi: 10.1109/CVPR.2009.5206848
– ident: ref4
  doi: 10.1109/MWC.2019.8752473
– ident: ref38
  doi: 10.1109/CVPR.2013.57
– year: 2015
  ident: ref40
  article-title: Density modeling of images using a generalized normalization transformation
  publication-title: arXiv:1511.06281
– ident: ref19
  doi: 10.1109/JSAC.2022.3180802
– ident: ref33
  doi: 10.1007/978-3-7091-2945-6
– year: 2022
  ident: ref5
  article-title: Task-oriented semantic communication with semantic reconstruction: An extended rate-distortion theory based scheme
  publication-title: arXiv:2201.10929
– year: 2014
  ident: ref44
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref22
  doi: 10.1109/ICCV.2013.441
– ident: ref2
  doi: 10.1017/CBO9780511807213
– ident: ref7
  doi: 10.1109/JSAC.2016.2525418
– year: 2018
  ident: ref25
  article-title: Effects of degradations on deep neural network architectures
  publication-title: arXiv:1807.10108
– ident: ref34
  doi: 10.1145/214762.214771
SSID ssj0001105196
Score 2.4866142
Snippet Semantic communications are expected to accomplish various semantic tasks with relatively less spectrum resource by exploiting the semantic feature of source...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Bayesian analysis
Coding
Data compression
Data recovery
Data transmission
deep learning
Distortion
Feature extraction
Image classification
Image coding
Image transmission
Iterative methods
Machine learning
Optimization
Rate-distortion
rate-distortion theory
Semantic communications
Semantics
separate source-channel coding
Statistical inference
Task analysis
Training
variational autoencoder
Title Joint Task and Data Oriented Semantic Communications: A Deep Separate Source-channel Coding Scheme
URI https://ieeexplore.ieee.org/document/10175391
https://www.proquest.com/docview/2912942995
Volume 11
WOSCitedRecordID wos001153911600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86PHhxfuJ0Sg6ehMykbZrG2_AD3WETnOCtpMkLDrUbW-ffb5J1fiAK3gpN2pDfS9_rS37vh9AJ5YoXygARiTIkKbQmmRWWUCMNtYoyECqITYh-P3t8lHc1WT1wYQAgHD6Djr8Me_lmrOc-VXbmzYfHnqu-KkS6IGt9JlSYj0bSeueSUXnWux0MO14evBM7p8Z48s33BDGVH1_g4Faum_8c0CbaqONH3F0AvoVWoNxGzaU2A66X6g4qeuNRWeGhmj1jVRp8qSqFB76osQsx8T28uhkdafyNHzI7x118CTBx90NJcMD3IbdPPD24hBfX3Ls695YneIVd9HB9Nby4IbWeAtGRTCrihp8qFbEii2zmwqBYFMyaotBc2yjWJolEqoAZmwK3UutMQ2IhY4qC8-pg4z3UKMcl7CMsrMiMlpBya5KUWmmVs4aE2kJyzSS0EF3OdK7rYuNe8-IlDz8dVOYenNyDk9fgtNDpR5fJotLGX413PRpfGi6AaKH2Es-8XoyzPJIuqPF-lx_80u0Qrbun--M4hPE2alTTORyhNf1WjWbT42Bn792Q1BA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yBX3xW5yfefBJyJa0Tdv4Jn4wdU7BCXsraXLB4daJq_79JlmnDlHwrdALCfe79K6X3P0QOqJc8lxqIEkkNYlypUhqEkOoFpoaSRkk0pNNJJ1O2uuJ-6pY3dfCAIC_fAYN9-jP8vVIvblUWdOZDw9drfq8o84Sk3Ktr5QKc_FIXJ1dMiqa11d33YYjCG-E1q0xHs14H0-n8uMb7B3L5co_l7SKlqsIEp9OIF9Dc1Cso5UpOwOuNusGyq9H_aLEXTl-xrLQ-FyWEt-5tsY2yMQPMLQ67Ss8UyEyPsGn-Bzgxb73TcEBP_jsPnEFwgUMrLhzdnaWJxjCJnq8vOietUjFqEBUIKKS2OXHUgYsTwOTWg2GSc6MznPFlQlCpaMgiSUwbWLgRiiVKogMpExSsH4dTLiFasWogG2EE5OkWgmIudFRTI0w0tpDRE0uuGIC6ohONZ2pqt24Y70YZP63g4rMgZM5cLIKnDo6_hzyMum18ZfwpkPjm-AEiDram-KZVdtxnAXChjXO8_KdX4YdosVW97adta86N7toyc7kLucQxvdQrXx9g320oN7L_vj1wNvcBx9J118
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Task+and+Data+Oriented+Semantic+Communications%3A+A+Deep+Separate+Source-channel+Coding+Scheme&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Huang%2C+Jianhao&rft.au=Li%2C+Dongxu&rft.au=Huang%2C+Chuan&rft.au=Qin%2C+Xiaoqi&rft.date=2024-01-15&rft.pub=IEEE&rft.eissn=2327-4662&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJIOT.2023.3293154&rft.externalDocID=10175391
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon