Remote Sensing Image Semantic Change Detection Boosted by Semi-Supervised Contrastive Learning of Semantic Segmentation

Semantic change detection (SCD) is a challenging task in remote sensing image (RSI) interpretation, which adopts multitemporal images to detect, locate, and analyze pixel-level land-cover "from-to" changes. In SCD, the severe class imbalance problem and the occurrence of confusing categori...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on geoscience and remote sensing Ročník 62; s. 1 - 13
Hlavní autori: Zhang, Xiuwei, Yang, Yizhe, Ran, Lingyan, Chen, Liang, Wang, Kangwei, Yu, Lei, Wang, Peng, Zhang, Yanning
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0196-2892, 1558-0644
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Semantic change detection (SCD) is a challenging task in remote sensing image (RSI) interpretation, which adopts multitemporal images to detect, locate, and analyze pixel-level land-cover "from-to" changes. In SCD, the severe class imbalance problem and the occurrence of confusing categories are very typical, making it challenging to accurately distinguish the easily confused categories with limited semantic context information. However, previous works did not address these issues in depth. This article proposes a novel SCD method named semi-supervised contrastive learning (SSCLNet), in which a simple and effective SCD network is designed as a strong baseline, and a semi-supervised contrastive learning module of semantic segmentation (SS) is presented to enhance the distinguishability of categories. Our baseline extracts semantic context through high-resolution network (HRNet), gets change information simply through an absolute difference, and then directly performs SCD based on the fusion of semantic context and change information. To utilize the semantic context information of the unlabeled non-changed regions, we employ a self-training (ST) method for semi-supervised SS. To learn distinguishable feature representations for easily confused categories, we present contrastive learning with an adaptive sampling strategy for SS. It selects challenging negative samples for each category from the other categories that exhibit similar features or attributes. The sampling space includes both the labeled changed samples and the non-changed samples predicted by ST. The comprehensive experiments on the SECOND and the Landsat-SCD dataset demonstrate that the proposed SSCLNet achieves the state-of-the-art (SOTA) performance, with a significant improvement of 2.07% and 4.15% in the score value, respectively.
AbstractList Semantic change detection (SCD) is a challenging task in remote sensing image (RSI) interpretation, which adopts multitemporal images to detect, locate, and analyze pixel-level land-cover "from-to" changes. In SCD, the severe class imbalance problem and the occurrence of confusing categories are very typical, making it challenging to accurately distinguish the easily confused categories with limited semantic context information. However, previous works did not address these issues in depth. This article proposes a novel SCD method named semi-supervised contrastive learning (SSCLNet), in which a simple and effective SCD network is designed as a strong baseline, and a semi-supervised contrastive learning module of semantic segmentation (SS) is presented to enhance the distinguishability of categories. Our baseline extracts semantic context through high-resolution network (HRNet), gets change information simply through an absolute difference, and then directly performs SCD based on the fusion of semantic context and change information. To utilize the semantic context information of the unlabeled non-changed regions, we employ a self-training (ST) method for semi-supervised SS. To learn distinguishable feature representations for easily confused categories, we present contrastive learning with an adaptive sampling strategy for SS. It selects challenging negative samples for each category from the other categories that exhibit similar features or attributes. The sampling space includes both the labeled changed samples and the non-changed samples predicted by ST. The comprehensive experiments on the SECOND and the Landsat-SCD dataset demonstrate that the proposed SSCLNet achieves the state-of-the-art (SOTA) performance, with a significant improvement of 2.07% and 4.15% in the score value, respectively.
Author Wang, Peng
Chen, Liang
Zhang, Yanning
Ran, Lingyan
Zhang, Xiuwei
Yang, Yizhe
Wang, Kangwei
Yu, Lei
Author_xml – sequence: 1
  givenname: Xiuwei
  orcidid: 0000-0001-7230-1476
  surname: Zhang
  fullname: Zhang, Xiuwei
  organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing and the National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Yizhe
  orcidid: 0000-0003-4335-4047
  surname: Yang
  fullname: Yang, Yizhe
  organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing and the National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Lingyan
  orcidid: 0000-0002-3084-9860
  surname: Ran
  fullname: Ran, Lingyan
  email: lran@nwpu.edu.cn
  organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing and the National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Liang
  surname: Chen
  fullname: Chen, Liang
  organization: Information Center, Yellow River Conservancy Commission, Zhengzhou, China
– sequence: 5
  givenname: Kangwei
  surname: Wang
  fullname: Wang, Kangwei
  organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing and the National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 6
  givenname: Lei
  orcidid: 0000-0001-9106-7515
  surname: Yu
  fullname: Yu, Lei
  organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing and the National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 7
  givenname: Peng
  orcidid: 0000-0002-9218-9132
  surname: Wang
  fullname: Wang, Peng
  organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing and the National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 8
  givenname: Yanning
  surname: Zhang
  fullname: Zhang, Yanning
  organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing and the National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
BookMark eNp9kE9LAzEQxYNUsFY_gOBhwfPW_N0mR61aCwWhW89LujtbU7pJTdJKv727tKB48DTM8HtvZt4l6llnAaEbgoeEYHW_mMzzIcWUDxlTgjBxhvpECJnijPMe6mOispRKRS_QZQhrjAkXZNRHX3NoXIQkBxuMXSXTRq-6rtE2mjIZf2jb9k8QoYzG2eTRuRChSpaHDjJpvtuC35vQjsbORq9DNHtIZqC97fxc_WOWw6oBG3VndIXOa70JcH2qA_T-8rwYv6azt8l0_DBLS6p4TEHpmsklFxpXIyK5ppqUoDNNM1FVBDDTXAqolqrKOKmFYhTXIEkmaikzrNkA3R19t9597iDEYu123rYrC4aFpIpmlLXU6EiV3oXgoS5Kc7yz_chsCoKLLuWiS7noUi5OKbdK8ke59abR_vCv5vaoMQDwixcEMy7ZN-OXi9Y
CODEN IGRSD2
CitedBy_id crossref_primary_10_1016_j_jag_2025_104415
crossref_primary_10_1111_phor_70021
crossref_primary_10_1109_TGRS_2025_3551504
crossref_primary_10_1109_JSTARS_2025_3565383
crossref_primary_10_1109_TCSVT_2024_3508768
Cites_doi 10.1109/TGRS.2021.3113912
10.1080/01431169608948758
10.1016/j.isprsjprs.2012.05.006
10.1016/j.rse.2018.11.014
10.1080/17538947.2022.2111470
10.1109/tgrs.2022.3174651
10.1016/j.cviu.2019.07.003
10.1016/j.isprsjprs.2021.12.005
10.1007/978-3-030-58601-0_26
10.1109/ICCV48922.2021.01045
10.1016/j.rse.2017.07.009
10.1609/aaai.v36i8.20907
10.3390/rs15040949
10.1109/CVPR52688.2022.00423
10.1109/CVPR46437.2021.00264
10.1016/j.isprsjprs.2020.06.014
10.1109/JSTARS.2012.2228469
10.1109/JSTARS.2020.3021098
10.1109/tgrs.2021.3102026
10.1109/CVPR52688.2022.00421
10.1109/ICCV.2017.606
10.1109/CVPR46437.2021.01652
10.1109/ICCV48922.2021.00811
10.1109/CVPR42600.2020.01070
10.1016/j.rse.2006.06.018
10.1109/TPAMI.2020.2983686
10.1109/ICCV48922.2021.01598
10.1109/CVPR.2017.660
10.1109/MGRS.2019.2898520
10.1080/01431161.2011.648285
10.1016/j.jag.2021.102465
10.1145/3422622
10.1109/tgrs.2021.3134277
10.3390/rs13030371
10.1109/CVPR42600.2020.01269
10.1109/CVPR.2016.90
10.1109/TPAMI.2019.2960224
10.1016/j.rse.2016.02.030
10.1109/JSTARS.2023.3268104
10.1109/JSTARS.2023.3280029
10.1109/TGRS.2018.2886643
10.1155/2016/9078364
10.1016/j.rse.2017.04.021
10.1016/j.isprsjprs.2013.03.006
10.1016/j.isprsjprs.2021.10.015
10.1109/TGRS.2022.3154390
10.1109/JSTARS.2022.3231915
10.1109/ICCV48922.2021.00934
10.1016/j.rse.2013.01.012
10.1109/CVPR52688.2022.01402
10.1080/01431160903475399
10.1016/j.jag.2022.102881
10.1016/j.isprsjprs.2019.10.003
10.1109/TGRS.2022.3211858
10.1109/TPAMI.2018.2858821
10.1109/JSTARS.2023.3255553
10.1109/TGRS.2018.2863224
10.1016/j.isprsjprs.2018.11.014
10.1109/taes.2023.3266415
10.1109/ICCV48922.2021.00721
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3395135
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 13
ExternalDocumentID 10_1109_TGRS_2024_3395135
10510348
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2023YFC32093042023YFC3209305
  funderid: 10.13039/501100012166
– fundername: Natural Science Foundation of Ningbo
  grantid: 2023J262
  funderid: 10.13039/100007834
– fundername: Natural Science Foundation of Shaanxi Province
  grantid: 2021KWZ-03; 2022JQ-686
– fundername: National Natural Science Foundation of China
  grantid: 61971356U19B2037
  funderid: 10.13039/501100001809
– fundername: Natural Science Basic Research Program of Shaanxi
  grantid: 2024JC-YBQN-0719
  funderid: 10.13039/501100017596
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-e9af38b45a0d7184a2a1cea6a265dd1e03a485edb9d641f59320fe8165f8860a3
IEDL.DBID RIE
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001230697200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 10:08:23 EDT 2025
Tue Nov 18 21:28:59 EST 2025
Sat Nov 29 03:32:35 EST 2025
Wed Aug 27 02:05:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-e9af38b45a0d7184a2a1cea6a265dd1e03a485edb9d641f59320fe8165f8860a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4335-4047
0000-0001-7230-1476
0000-0002-3084-9860
0000-0002-9218-9132
0000-0001-9106-7515
PQID 3058292623
PQPubID 85465
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2024_3395135
crossref_primary_10_1109_TGRS_2024_3395135
proquest_journals_3058292623
ieee_primary_10510348
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
Salimans (ref49); 29
ref56
ref15
ref59
ref14
ref58
ref53
ref11
ref55
ref10
ref54
ref17
ref16
ref18
Smith (ref19) 1996; 17
Liu (ref64) 2021
Laine (ref43) 2016
Grandvalet (ref46); 17
Sajjadi (ref42); 29
ref51
ref48
Arjovsky (ref50) 2017
ref44
Rasmus (ref41); 28
ref8
ref7
Xie (ref45); 33
ref9
Yang (ref27) 2020
ref4
ref3
ref6
Lee (ref47); 3
French (ref52) 2019
ref40
ref35
ref34
ref37
Khosla (ref69); 33
ref36
ref30
ref74
ref33
ref77
ref32
ref2
ref1
ref39
Ding (ref31) 2022
ref71
ref70
ref73
ref72
Suzuki (ref5) 2016
ref24
ref68
ref23
ref67
ref26
ref25
ref20
ref63
ref22
ref66
ref21
ref65
van den Oord (ref75) 2018
ref28
ref29
Hung (ref38) 2018
ref60
ref62
ref61
Loshchilov (ref76) 2017
References_xml – year: 2021
  ident: ref64
  article-title: Bootstrapping semantic segmentation with regional contrast
  publication-title: arXiv:2104.04465
– ident: ref1
  doi: 10.1109/TGRS.2021.3113912
– volume: 17
  start-page: 2043
  issue: 11
  year: 1996
  ident: ref19
  article-title: Digital change detection techniques using remotely-sensed data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169608948758
– ident: ref11
  doi: 10.1016/j.isprsjprs.2012.05.006
– volume: 17
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref46
  article-title: Semi-supervised learning by entropy minimization
– ident: ref4
  doi: 10.1016/j.rse.2018.11.014
– ident: ref28
  doi: 10.1080/17538947.2022.2111470
– ident: ref35
  doi: 10.1109/tgrs.2022.3174651
– year: 2018
  ident: ref75
  article-title: Representation learning with contrastive predictive coding
  publication-title: arXiv:1807.03748
– ident: ref21
  doi: 10.1016/j.cviu.2019.07.003
– ident: ref29
  doi: 10.1016/j.isprsjprs.2021.12.005
– ident: ref54
  doi: 10.1007/978-3-030-58601-0_26
– ident: ref70
  doi: 10.1109/ICCV48922.2021.01045
– ident: ref18
  doi: 10.1016/j.rse.2017.07.009
– year: 2022
  ident: ref31
  article-title: Joint spatio-temporal modeling for the semantic change detection in remote sensing images
  publication-title: arXiv:2212.05245
– ident: ref71
  doi: 10.1609/aaai.v36i8.20907
– ident: ref32
  doi: 10.3390/rs15040949
– ident: ref59
  doi: 10.1109/CVPR52688.2022.00423
– year: 2016
  ident: ref5
  article-title: Semantic change detection with hypermaps
  publication-title: arXiv:1604.07513
– ident: ref55
  doi: 10.1109/CVPR46437.2021.00264
– ident: ref61
  doi: 10.1016/j.isprsjprs.2020.06.014
– year: 2017
  ident: ref50
  article-title: Towards principled methods for training generative adversarial networks
  publication-title: arXiv:1701.04862
– ident: ref17
  doi: 10.1109/JSTARS.2012.2228469
– ident: ref60
  doi: 10.1109/JSTARS.2020.3021098
– ident: ref57
  doi: 10.1109/tgrs.2021.3102026
– ident: ref73
  doi: 10.1109/CVPR52688.2022.00421
– volume: 3
  start-page: 896
  issue: 2
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref47
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
– ident: ref37
  doi: 10.1109/ICCV.2017.606
– ident: ref34
  doi: 10.1109/CVPR46437.2021.01652
– ident: ref65
  doi: 10.1109/ICCV48922.2021.00811
– ident: ref48
  doi: 10.1109/CVPR42600.2020.01070
– ident: ref2
  doi: 10.1016/j.rse.2006.06.018
– volume: 29
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref42
  article-title: Regularization with stochastic transformations and perturbations for deep semi-supervised learning
– ident: ref26
  doi: 10.1109/TPAMI.2020.2983686
– ident: ref68
  doi: 10.1109/ICCV48922.2021.01598
– ident: ref74
  doi: 10.1109/CVPR.2017.660
– year: 2018
  ident: ref38
  article-title: Adversarial learning for semi-supervised semantic segmentation
  publication-title: arXiv:1802.07934
– ident: ref13
  doi: 10.1109/MGRS.2019.2898520
– ident: ref9
  doi: 10.1080/01431161.2011.648285
– year: 2016
  ident: ref43
  article-title: Temporal ensembling for semi-supervised learning
  publication-title: arXiv:1610.02242
– ident: ref22
  doi: 10.1016/j.jag.2021.102465
– year: 2020
  ident: ref27
  article-title: Semantic change detection with asymmetric Siamese networks
  publication-title: arXiv:2010.05687
– volume: 28
  volume-title: Proc. Adv. neural Inf. Process. Syst.
  ident: ref41
  article-title: Semi-supervised learning with Ladder networks
– ident: ref40
  doi: 10.1145/3422622
– ident: ref56
  doi: 10.1109/tgrs.2021.3134277
– ident: ref62
  doi: 10.3390/rs13030371
– ident: ref53
  doi: 10.1109/CVPR42600.2020.01269
– ident: ref77
  doi: 10.1109/CVPR.2016.90
– ident: ref39
  doi: 10.1109/TPAMI.2019.2960224
– ident: ref14
  doi: 10.1016/j.rse.2016.02.030
– ident: ref63
  doi: 10.1109/JSTARS.2023.3268104
– ident: ref36
  doi: 10.1109/JSTARS.2023.3280029
– ident: ref6
  doi: 10.1109/TGRS.2018.2886643
– year: 2019
  ident: ref52
  article-title: Semi-supervised semantic segmentation needs strong, varied perturbations
  publication-title: arXiv:1906.01916
– ident: ref15
  doi: 10.1155/2016/9078364
– ident: ref3
  doi: 10.1016/j.rse.2017.04.021
– ident: ref10
  doi: 10.1016/j.isprsjprs.2013.03.006
– ident: ref23
  doi: 10.1016/j.isprsjprs.2021.10.015
– ident: ref30
  doi: 10.1109/TGRS.2022.3154390
– ident: ref33
  doi: 10.1109/JSTARS.2022.3231915
– volume: 29
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref49
  article-title: Improved techniques for training GANs
– ident: ref66
  doi: 10.1109/ICCV48922.2021.00934
– volume: 33
  start-page: 18661
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref69
  article-title: Supervised contrastive learning
– ident: ref12
  doi: 10.1016/j.rse.2013.01.012
– volume: 33
  start-page: 6256
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref45
  article-title: Unsupervised data augmentation for consistency training
– ident: ref72
  doi: 10.1109/CVPR52688.2022.01402
– year: 2017
  ident: ref76
  article-title: Decoupled weight decay regularization
  publication-title: arXiv:1711.05101
– ident: ref16
  doi: 10.1080/01431160903475399
– ident: ref58
  doi: 10.1016/j.jag.2022.102881
– ident: ref8
  doi: 10.1016/j.isprsjprs.2019.10.003
– ident: ref24
  doi: 10.1109/TGRS.2022.3211858
– ident: ref44
  doi: 10.1109/TPAMI.2018.2858821
– ident: ref51
  doi: 10.1109/JSTARS.2023.3255553
– ident: ref20
  doi: 10.1109/TGRS.2018.2863224
– ident: ref7
  doi: 10.1016/j.isprsjprs.2018.11.014
– ident: ref25
  doi: 10.1109/taes.2023.3266415
– ident: ref67
  doi: 10.1109/ICCV48922.2021.00721
SSID ssj0014517
Score 2.6204169
Snippet Semantic change detection (SCD) is a challenging task in remote sensing image (RSI) interpretation, which adopts multitemporal images to detect, locate, and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive sampling
Categories
Change detection
Context
Contrastive learning
Earth
Image segmentation
Information processing
Land cover
Landsat
Learning
Remote sensing
Sampling
Self-supervised learning
self-training (ST)
semantic change detection (SCD)
Semantic segmentation
Semantics
Semi-supervised learning
Task analysis
Training
Title Remote Sensing Image Semantic Change Detection Boosted by Semi-Supervised Contrastive Learning of Semantic Segmentation
URI https://ieeexplore.ieee.org/document/10510348
https://www.proquest.com/docview/3058292623
Volume 62
WOSCitedRecordID wos001230697200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BAqkc-kGp2EIrH3pCCo1jJ7GPQEvbC6pYkLhFE3u8WqmbRZtdUP99bcd8SBWVekss24ny4vHYnvcG4JNofbGRMkPu6kwirzKFIZjGO-eu4Cg0x5hsoj4_V9fX-mciq0cuDBHF4DM6CpfxLN_OzSpslfkRHvTfpFqH9bquBrLWw5GBLHniRlf-SbpIR5g8158vv12M_VKwkEdCeI8ipnZ7nIRiVpW_THGcX85e_eebvYaXyZFkxwPyb2CNuh3YfiIvuANbMbzT9G_h7oI8JMTGIVy9m7AfM29G_N3Mf9epYQPFgH2hZQzM6tjJPHI_WPs7VJpm49VNsCm9LwpyVgvsg5VkSZx1wubusbMxTWaJ0NTtwtXZ18vT71lKuZCZQstlRhqdUK0sMbd-1pJYIDeEFRZVaS2nXKBUJdlW20pyV3rvL3ekeFU6paocxTvY6OYd7QEzYWjXwlnnrLRaYY3ek-e6tX6FRRJHkN9j0JikRx7SYvxq4rok102ArQmwNQm2ERw-NLkZxDj-VXk34PSk4gDRCA7ukW7SeO0bb_VUEaQTxftnmu3Di9D7sPtyABvLxYo-wKa5XU77xcf4K_4Bh3bcWw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BAZUeeJRW3VLAB05IKXHsZO0jr9KKskLdReotcuzxaqVuttrsgvj3eBz3ISGQuCWWHUf54vHYnu8bgNeiCcVWysxwP8yk4VWmDAXTBOfcF9wIzU1MNjEcjdT5uf6WyOqRC4OIMfgMD-kynuW7hV3TVlkY4aT_JtVduEeps8qernV9aCBLntjRVehLF-kQk-f67eTz2TgsBgt5KETwKWJyt5tpKOZV-cMYxxnm6PF_vtsTeJRcSfaux_4p3MF2G7ZuCQxuw4MY4Gm7Z_DzDAMoyMYUsN5O2ck8GJJwNw9fdmZZTzJgH3EVQ7Na9n4R2R-s-UWVZtl4fUlWpQtFJGi1NB3ZSZbkWads4W8eNsbpPFGa2h34fvRp8uE4S0kXMltoucpQGy9UI0uTuzBvSVMYbtFUpqhK5zjmwkhVomu0qyT3ZfD_co-KV6VXqsqN2IWNdtHiHjBLg3sovPPeSaeVGZrgy3PduLDGQmkGkF9hUNukSE6JMS7quDLJdU2w1QRbnWAbwJvrJpe9HMe_Ku8QTrcq9hAN4OAK6TqN2K4Odk8VJJ4o9v_S7BVsHk--ntanJ6Mvz-Eh9dTvxRzAxmq5xhdw3_5Yzbrly_hb_gYuAN-m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+Sensing+Image+Semantic+Change+Detection+Boosted+by+Semi-Supervised+Contrastive+Learning+of+Semantic+Segmentation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhang%2C+Xiuwei&rft.au=Yang%2C+Yizhe&rft.au=Ran%2C+Lingyan&rft.au=Chen%2C+Liang&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2024.3395135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3395135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon