Remote Sensing Image Semantic Change Detection Boosted by Semi-Supervised Contrastive Learning of Semantic Segmentation
Semantic change detection (SCD) is a challenging task in remote sensing image (RSI) interpretation, which adopts multitemporal images to detect, locate, and analyze pixel-level land-cover "from-to" changes. In SCD, the severe class imbalance problem and the occurrence of confusing categori...
Uložené v:
| Vydané v: | IEEE transactions on geoscience and remote sensing Ročník 62; s. 1 - 13 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Semantic change detection (SCD) is a challenging task in remote sensing image (RSI) interpretation, which adopts multitemporal images to detect, locate, and analyze pixel-level land-cover "from-to" changes. In SCD, the severe class imbalance problem and the occurrence of confusing categories are very typical, making it challenging to accurately distinguish the easily confused categories with limited semantic context information. However, previous works did not address these issues in depth. This article proposes a novel SCD method named semi-supervised contrastive learning (SSCLNet), in which a simple and effective SCD network is designed as a strong baseline, and a semi-supervised contrastive learning module of semantic segmentation (SS) is presented to enhance the distinguishability of categories. Our baseline extracts semantic context through high-resolution network (HRNet), gets change information simply through an absolute difference, and then directly performs SCD based on the fusion of semantic context and change information. To utilize the semantic context information of the unlabeled non-changed regions, we employ a self-training (ST) method for semi-supervised SS. To learn distinguishable feature representations for easily confused categories, we present contrastive learning with an adaptive sampling strategy for SS. It selects challenging negative samples for each category from the other categories that exhibit similar features or attributes. The sampling space includes both the labeled changed samples and the non-changed samples predicted by ST. The comprehensive experiments on the SECOND and the Landsat-SCD dataset demonstrate that the proposed SSCLNet achieves the state-of-the-art (SOTA) performance, with a significant improvement of 2.07% and 4.15% in the score value, respectively. |
|---|---|
| AbstractList | Semantic change detection (SCD) is a challenging task in remote sensing image (RSI) interpretation, which adopts multitemporal images to detect, locate, and analyze pixel-level land-cover "from-to" changes. In SCD, the severe class imbalance problem and the occurrence of confusing categories are very typical, making it challenging to accurately distinguish the easily confused categories with limited semantic context information. However, previous works did not address these issues in depth. This article proposes a novel SCD method named semi-supervised contrastive learning (SSCLNet), in which a simple and effective SCD network is designed as a strong baseline, and a semi-supervised contrastive learning module of semantic segmentation (SS) is presented to enhance the distinguishability of categories. Our baseline extracts semantic context through high-resolution network (HRNet), gets change information simply through an absolute difference, and then directly performs SCD based on the fusion of semantic context and change information. To utilize the semantic context information of the unlabeled non-changed regions, we employ a self-training (ST) method for semi-supervised SS. To learn distinguishable feature representations for easily confused categories, we present contrastive learning with an adaptive sampling strategy for SS. It selects challenging negative samples for each category from the other categories that exhibit similar features or attributes. The sampling space includes both the labeled changed samples and the non-changed samples predicted by ST. The comprehensive experiments on the SECOND and the Landsat-SCD dataset demonstrate that the proposed SSCLNet achieves the state-of-the-art (SOTA) performance, with a significant improvement of 2.07% and 4.15% in the score value, respectively. |
| Author | Wang, Peng Chen, Liang Zhang, Yanning Ran, Lingyan Zhang, Xiuwei Yang, Yizhe Wang, Kangwei Yu, Lei |
| Author_xml | – sequence: 1 givenname: Xiuwei orcidid: 0000-0001-7230-1476 surname: Zhang fullname: Zhang, Xiuwei organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing and the National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Yizhe orcidid: 0000-0003-4335-4047 surname: Yang fullname: Yang, Yizhe organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing and the National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Lingyan orcidid: 0000-0002-3084-9860 surname: Ran fullname: Ran, Lingyan email: lran@nwpu.edu.cn organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing and the National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Liang surname: Chen fullname: Chen, Liang organization: Information Center, Yellow River Conservancy Commission, Zhengzhou, China – sequence: 5 givenname: Kangwei surname: Wang fullname: Wang, Kangwei organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing and the National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an, China – sequence: 6 givenname: Lei orcidid: 0000-0001-9106-7515 surname: Yu fullname: Yu, Lei organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing and the National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an, China – sequence: 7 givenname: Peng orcidid: 0000-0002-9218-9132 surname: Wang fullname: Wang, Peng organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing and the National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an, China – sequence: 8 givenname: Yanning surname: Zhang fullname: Zhang, Yanning organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing and the National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an, China |
| BookMark | eNp9kE9LAzEQxYNUsFY_gOBhwfPW_N0mR61aCwWhW89LujtbU7pJTdJKv727tKB48DTM8HtvZt4l6llnAaEbgoeEYHW_mMzzIcWUDxlTgjBxhvpECJnijPMe6mOispRKRS_QZQhrjAkXZNRHX3NoXIQkBxuMXSXTRq-6rtE2mjIZf2jb9k8QoYzG2eTRuRChSpaHDjJpvtuC35vQjsbORq9DNHtIZqC97fxc_WOWw6oBG3VndIXOa70JcH2qA_T-8rwYv6azt8l0_DBLS6p4TEHpmsklFxpXIyK5ppqUoDNNM1FVBDDTXAqolqrKOKmFYhTXIEkmaikzrNkA3R19t9597iDEYu123rYrC4aFpIpmlLXU6EiV3oXgoS5Kc7yz_chsCoKLLuWiS7noUi5OKbdK8ke59abR_vCv5vaoMQDwixcEMy7ZN-OXi9Y |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1016_j_jag_2025_104415 crossref_primary_10_1111_phor_70021 crossref_primary_10_1109_TGRS_2025_3551504 crossref_primary_10_1109_JSTARS_2025_3565383 crossref_primary_10_1109_TCSVT_2024_3508768 |
| Cites_doi | 10.1109/TGRS.2021.3113912 10.1080/01431169608948758 10.1016/j.isprsjprs.2012.05.006 10.1016/j.rse.2018.11.014 10.1080/17538947.2022.2111470 10.1109/tgrs.2022.3174651 10.1016/j.cviu.2019.07.003 10.1016/j.isprsjprs.2021.12.005 10.1007/978-3-030-58601-0_26 10.1109/ICCV48922.2021.01045 10.1016/j.rse.2017.07.009 10.1609/aaai.v36i8.20907 10.3390/rs15040949 10.1109/CVPR52688.2022.00423 10.1109/CVPR46437.2021.00264 10.1016/j.isprsjprs.2020.06.014 10.1109/JSTARS.2012.2228469 10.1109/JSTARS.2020.3021098 10.1109/tgrs.2021.3102026 10.1109/CVPR52688.2022.00421 10.1109/ICCV.2017.606 10.1109/CVPR46437.2021.01652 10.1109/ICCV48922.2021.00811 10.1109/CVPR42600.2020.01070 10.1016/j.rse.2006.06.018 10.1109/TPAMI.2020.2983686 10.1109/ICCV48922.2021.01598 10.1109/CVPR.2017.660 10.1109/MGRS.2019.2898520 10.1080/01431161.2011.648285 10.1016/j.jag.2021.102465 10.1145/3422622 10.1109/tgrs.2021.3134277 10.3390/rs13030371 10.1109/CVPR42600.2020.01269 10.1109/CVPR.2016.90 10.1109/TPAMI.2019.2960224 10.1016/j.rse.2016.02.030 10.1109/JSTARS.2023.3268104 10.1109/JSTARS.2023.3280029 10.1109/TGRS.2018.2886643 10.1155/2016/9078364 10.1016/j.rse.2017.04.021 10.1016/j.isprsjprs.2013.03.006 10.1016/j.isprsjprs.2021.10.015 10.1109/TGRS.2022.3154390 10.1109/JSTARS.2022.3231915 10.1109/ICCV48922.2021.00934 10.1016/j.rse.2013.01.012 10.1109/CVPR52688.2022.01402 10.1080/01431160903475399 10.1016/j.jag.2022.102881 10.1016/j.isprsjprs.2019.10.003 10.1109/TGRS.2022.3211858 10.1109/TPAMI.2018.2858821 10.1109/JSTARS.2023.3255553 10.1109/TGRS.2018.2863224 10.1016/j.isprsjprs.2018.11.014 10.1109/taes.2023.3266415 10.1109/ICCV48922.2021.00721 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2024.3395135 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 13 |
| ExternalDocumentID | 10_1109_TGRS_2024_3395135 10510348 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2023YFC32093042023YFC3209305 funderid: 10.13039/501100012166 – fundername: Natural Science Foundation of Ningbo grantid: 2023J262 funderid: 10.13039/100007834 – fundername: Natural Science Foundation of Shaanxi Province grantid: 2021KWZ-03; 2022JQ-686 – fundername: National Natural Science Foundation of China grantid: 61971356U19B2037 funderid: 10.13039/501100001809 – fundername: Natural Science Basic Research Program of Shaanxi grantid: 2024JC-YBQN-0719 funderid: 10.13039/501100017596 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c294t-e9af38b45a0d7184a2a1cea6a265dd1e03a485edb9d641f59320fe8165f8860a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001230697200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 10:08:23 EDT 2025 Tue Nov 18 21:28:59 EST 2025 Sat Nov 29 03:32:35 EST 2025 Wed Aug 27 02:05:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-e9af38b45a0d7184a2a1cea6a265dd1e03a485edb9d641f59320fe8165f8860a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4335-4047 0000-0001-7230-1476 0000-0002-3084-9860 0000-0002-9218-9132 0000-0001-9106-7515 |
| PQID | 3058292623 |
| PQPubID | 85465 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2024_3395135 crossref_primary_10_1109_TGRS_2024_3395135 proquest_journals_3058292623 ieee_primary_10510348 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 Salimans (ref49); 29 ref56 ref15 ref59 ref14 ref58 ref53 ref11 ref55 ref10 ref54 ref17 ref16 ref18 Smith (ref19) 1996; 17 Liu (ref64) 2021 Laine (ref43) 2016 Grandvalet (ref46); 17 Sajjadi (ref42); 29 ref51 ref48 Arjovsky (ref50) 2017 ref44 Rasmus (ref41); 28 ref8 ref7 Xie (ref45); 33 ref9 Yang (ref27) 2020 ref4 ref3 ref6 Lee (ref47); 3 French (ref52) 2019 ref40 ref35 ref34 ref37 Khosla (ref69); 33 ref36 ref30 ref74 ref33 ref77 ref32 ref2 ref1 ref39 Ding (ref31) 2022 ref71 ref70 ref73 ref72 Suzuki (ref5) 2016 ref24 ref68 ref23 ref67 ref26 ref25 ref20 ref63 ref22 ref66 ref21 ref65 van den Oord (ref75) 2018 ref28 ref29 Hung (ref38) 2018 ref60 ref62 ref61 Loshchilov (ref76) 2017 |
| References_xml | – year: 2021 ident: ref64 article-title: Bootstrapping semantic segmentation with regional contrast publication-title: arXiv:2104.04465 – ident: ref1 doi: 10.1109/TGRS.2021.3113912 – volume: 17 start-page: 2043 issue: 11 year: 1996 ident: ref19 article-title: Digital change detection techniques using remotely-sensed data publication-title: Int. J. Remote Sens. doi: 10.1080/01431169608948758 – ident: ref11 doi: 10.1016/j.isprsjprs.2012.05.006 – volume: 17 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref46 article-title: Semi-supervised learning by entropy minimization – ident: ref4 doi: 10.1016/j.rse.2018.11.014 – ident: ref28 doi: 10.1080/17538947.2022.2111470 – ident: ref35 doi: 10.1109/tgrs.2022.3174651 – year: 2018 ident: ref75 article-title: Representation learning with contrastive predictive coding publication-title: arXiv:1807.03748 – ident: ref21 doi: 10.1016/j.cviu.2019.07.003 – ident: ref29 doi: 10.1016/j.isprsjprs.2021.12.005 – ident: ref54 doi: 10.1007/978-3-030-58601-0_26 – ident: ref70 doi: 10.1109/ICCV48922.2021.01045 – ident: ref18 doi: 10.1016/j.rse.2017.07.009 – year: 2022 ident: ref31 article-title: Joint spatio-temporal modeling for the semantic change detection in remote sensing images publication-title: arXiv:2212.05245 – ident: ref71 doi: 10.1609/aaai.v36i8.20907 – ident: ref32 doi: 10.3390/rs15040949 – ident: ref59 doi: 10.1109/CVPR52688.2022.00423 – year: 2016 ident: ref5 article-title: Semantic change detection with hypermaps publication-title: arXiv:1604.07513 – ident: ref55 doi: 10.1109/CVPR46437.2021.00264 – ident: ref61 doi: 10.1016/j.isprsjprs.2020.06.014 – year: 2017 ident: ref50 article-title: Towards principled methods for training generative adversarial networks publication-title: arXiv:1701.04862 – ident: ref17 doi: 10.1109/JSTARS.2012.2228469 – ident: ref60 doi: 10.1109/JSTARS.2020.3021098 – ident: ref57 doi: 10.1109/tgrs.2021.3102026 – ident: ref73 doi: 10.1109/CVPR52688.2022.00421 – volume: 3 start-page: 896 issue: 2 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref47 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks – ident: ref37 doi: 10.1109/ICCV.2017.606 – ident: ref34 doi: 10.1109/CVPR46437.2021.01652 – ident: ref65 doi: 10.1109/ICCV48922.2021.00811 – ident: ref48 doi: 10.1109/CVPR42600.2020.01070 – ident: ref2 doi: 10.1016/j.rse.2006.06.018 – volume: 29 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref42 article-title: Regularization with stochastic transformations and perturbations for deep semi-supervised learning – ident: ref26 doi: 10.1109/TPAMI.2020.2983686 – ident: ref68 doi: 10.1109/ICCV48922.2021.01598 – ident: ref74 doi: 10.1109/CVPR.2017.660 – year: 2018 ident: ref38 article-title: Adversarial learning for semi-supervised semantic segmentation publication-title: arXiv:1802.07934 – ident: ref13 doi: 10.1109/MGRS.2019.2898520 – ident: ref9 doi: 10.1080/01431161.2011.648285 – year: 2016 ident: ref43 article-title: Temporal ensembling for semi-supervised learning publication-title: arXiv:1610.02242 – ident: ref22 doi: 10.1016/j.jag.2021.102465 – year: 2020 ident: ref27 article-title: Semantic change detection with asymmetric Siamese networks publication-title: arXiv:2010.05687 – volume: 28 volume-title: Proc. Adv. neural Inf. Process. Syst. ident: ref41 article-title: Semi-supervised learning with Ladder networks – ident: ref40 doi: 10.1145/3422622 – ident: ref56 doi: 10.1109/tgrs.2021.3134277 – ident: ref62 doi: 10.3390/rs13030371 – ident: ref53 doi: 10.1109/CVPR42600.2020.01269 – ident: ref77 doi: 10.1109/CVPR.2016.90 – ident: ref39 doi: 10.1109/TPAMI.2019.2960224 – ident: ref14 doi: 10.1016/j.rse.2016.02.030 – ident: ref63 doi: 10.1109/JSTARS.2023.3268104 – ident: ref36 doi: 10.1109/JSTARS.2023.3280029 – ident: ref6 doi: 10.1109/TGRS.2018.2886643 – year: 2019 ident: ref52 article-title: Semi-supervised semantic segmentation needs strong, varied perturbations publication-title: arXiv:1906.01916 – ident: ref15 doi: 10.1155/2016/9078364 – ident: ref3 doi: 10.1016/j.rse.2017.04.021 – ident: ref10 doi: 10.1016/j.isprsjprs.2013.03.006 – ident: ref23 doi: 10.1016/j.isprsjprs.2021.10.015 – ident: ref30 doi: 10.1109/TGRS.2022.3154390 – ident: ref33 doi: 10.1109/JSTARS.2022.3231915 – volume: 29 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref49 article-title: Improved techniques for training GANs – ident: ref66 doi: 10.1109/ICCV48922.2021.00934 – volume: 33 start-page: 18661 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref69 article-title: Supervised contrastive learning – ident: ref12 doi: 10.1016/j.rse.2013.01.012 – volume: 33 start-page: 6256 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref45 article-title: Unsupervised data augmentation for consistency training – ident: ref72 doi: 10.1109/CVPR52688.2022.01402 – year: 2017 ident: ref76 article-title: Decoupled weight decay regularization publication-title: arXiv:1711.05101 – ident: ref16 doi: 10.1080/01431160903475399 – ident: ref58 doi: 10.1016/j.jag.2022.102881 – ident: ref8 doi: 10.1016/j.isprsjprs.2019.10.003 – ident: ref24 doi: 10.1109/TGRS.2022.3211858 – ident: ref44 doi: 10.1109/TPAMI.2018.2858821 – ident: ref51 doi: 10.1109/JSTARS.2023.3255553 – ident: ref20 doi: 10.1109/TGRS.2018.2863224 – ident: ref7 doi: 10.1016/j.isprsjprs.2018.11.014 – ident: ref25 doi: 10.1109/taes.2023.3266415 – ident: ref67 doi: 10.1109/ICCV48922.2021.00721 |
| SSID | ssj0014517 |
| Score | 2.6204169 |
| Snippet | Semantic change detection (SCD) is a challenging task in remote sensing image (RSI) interpretation, which adopts multitemporal images to detect, locate, and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptive sampling Categories Change detection Context Contrastive learning Earth Image segmentation Information processing Land cover Landsat Learning Remote sensing Sampling Self-supervised learning self-training (ST) semantic change detection (SCD) Semantic segmentation Semantics Semi-supervised learning Task analysis Training |
| Title | Remote Sensing Image Semantic Change Detection Boosted by Semi-Supervised Contrastive Learning of Semantic Segmentation |
| URI | https://ieeexplore.ieee.org/document/10510348 https://www.proquest.com/docview/3058292623 |
| Volume | 62 |
| WOSCitedRecordID | wos001230697200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BAqkc-kGp2EIrH3pCCo1jJ7GPQEvbC6pYkLhFE3u8WqmbRZtdUP99bcd8SBWVekss24ny4vHYnvcG4JNofbGRMkPu6kwirzKFIZjGO-eu4Cg0x5hsoj4_V9fX-mciq0cuDBHF4DM6CpfxLN_OzSpslfkRHvTfpFqH9bquBrLWw5GBLHniRlf-SbpIR5g8158vv12M_VKwkEdCeI8ipnZ7nIRiVpW_THGcX85e_eebvYaXyZFkxwPyb2CNuh3YfiIvuANbMbzT9G_h7oI8JMTGIVy9m7AfM29G_N3Mf9epYQPFgH2hZQzM6tjJPHI_WPs7VJpm49VNsCm9LwpyVgvsg5VkSZx1wubusbMxTWaJ0NTtwtXZ18vT71lKuZCZQstlRhqdUK0sMbd-1pJYIDeEFRZVaS2nXKBUJdlW20pyV3rvL3ekeFU6paocxTvY6OYd7QEzYWjXwlnnrLRaYY3ek-e6tX6FRRJHkN9j0JikRx7SYvxq4rok102ArQmwNQm2ERw-NLkZxDj-VXk34PSk4gDRCA7ukW7SeO0bb_VUEaQTxftnmu3Di9D7sPtyABvLxYo-wKa5XU77xcf4K_4Bh3bcWw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BAZUeeJRW3VLAB05IKXHsZO0jr9KKskLdReotcuzxaqVuttrsgvj3eBz3ISGQuCWWHUf54vHYnu8bgNeiCcVWysxwP8yk4VWmDAXTBOfcF9wIzU1MNjEcjdT5uf6WyOqRC4OIMfgMD-kynuW7hV3TVlkY4aT_JtVduEeps8qernV9aCBLntjRVehLF-kQk-f67eTz2TgsBgt5KETwKWJyt5tpKOZV-cMYxxnm6PF_vtsTeJRcSfaux_4p3MF2G7ZuCQxuw4MY4Gm7Z_DzDAMoyMYUsN5O2ck8GJJwNw9fdmZZTzJgH3EVQ7Na9n4R2R-s-UWVZtl4fUlWpQtFJGi1NB3ZSZbkWads4W8eNsbpPFGa2h34fvRp8uE4S0kXMltoucpQGy9UI0uTuzBvSVMYbtFUpqhK5zjmwkhVomu0qyT3ZfD_co-KV6VXqsqN2IWNdtHiHjBLg3sovPPeSaeVGZrgy3PduLDGQmkGkF9hUNukSE6JMS7quDLJdU2w1QRbnWAbwJvrJpe9HMe_Ku8QTrcq9hAN4OAK6TqN2K4Odk8VJJ4o9v_S7BVsHk--ntanJ6Mvz-Eh9dTvxRzAxmq5xhdw3_5Yzbrly_hb_gYuAN-m |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+Sensing+Image+Semantic+Change+Detection+Boosted+by+Semi-Supervised+Contrastive+Learning+of+Semantic+Segmentation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhang%2C+Xiuwei&rft.au=Yang%2C+Yizhe&rft.au=Ran%2C+Lingyan&rft.au=Chen%2C+Liang&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2024.3395135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3395135 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |