An Evolutionary Multitasking Algorithm with Multiple Filtering for High-Dimensional Feature Selection
Recently, evolutionary multitasking (EMT) has been successfully used in the field of high-dimensional classification. However, the generation of multiple tasks in the existing EMT-based feature selection (FS) methods is relatively simple, using only the Relief-F method to collect related features wi...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 27; H. 4; S. 1 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recently, evolutionary multitasking (EMT) has been successfully used in the field of high-dimensional classification. However, the generation of multiple tasks in the existing EMT-based feature selection (FS) methods is relatively simple, using only the Relief-F method to collect related features with similar importance into one task, which cannot provide more diversified tasks for knowledge transfer. Thus, this paper devises a new EMT algorithm for FS in high-dimensional classification, which first adopts different filtering methods to produce multiple tasks and then modifies a competitive swarm optimizer to efficiently solve these related tasks via knowledge transfer. First, a diversified multiple task generation method is designed based on multiple filtering methods, which generates several relevant low-dimensional FS tasks by eliminating irrelevant features. In this way, useful knowledge for solving simple and relevant tasks can be transferred to simplify and speed up the solution of the original high-dimensional FS task. Then, a competitive swarm optimizer is modified to simultaneously solve these relevant FS tasks by transferring useful knowledge among them. Numerous empirical results demonstrate that the proposed EMT-based FS method can obtain a better feature subset than several state-of-the-art FS methods on eighteen high-dimensional datasets. |
|---|---|
| AbstractList | Recently, evolutionary multitasking (EMT) has been successfully used in the field of high-dimensional classification. However, the generation of multiple tasks in the existing EMT-based feature selection (FS) methods is relatively simple, using only the Relief-[Formula Omitted] method to collect related features with similar importance into one task, which cannot provide more diversified tasks for knowledge transfer. Thus, this article devises a new EMT algorithm for FS in high-dimensional classification, which first adopts different filtering methods to produce multiple tasks and then modifies a competitive swarm optimizer (CSO) to efficiently solve these related tasks via knowledge transfer. First, a diversified multiple task generation method is designed based on multiple filtering methods, which generates several relevant low-dimensional FS tasks by eliminating irrelevant features. In this way, useful knowledge for solving simple and relevant tasks can be transferred to simplify and speed up the solution of the original high-dimensional FS task. Then, a CSO is modified to simultaneously solve these relevant FS tasks by transferring useful knowledge among them. Numerous empirical results demonstrate that the proposed EMT-based FS method can obtain a better feature subset than several state-of-the-art FS methods on 18 high-dimensional datasets. Recently, evolutionary multitasking (EMT) has been successfully used in the field of high-dimensional classification. However, the generation of multiple tasks in the existing EMT-based feature selection (FS) methods is relatively simple, using only the Relief-F method to collect related features with similar importance into one task, which cannot provide more diversified tasks for knowledge transfer. Thus, this paper devises a new EMT algorithm for FS in high-dimensional classification, which first adopts different filtering methods to produce multiple tasks and then modifies a competitive swarm optimizer to efficiently solve these related tasks via knowledge transfer. First, a diversified multiple task generation method is designed based on multiple filtering methods, which generates several relevant low-dimensional FS tasks by eliminating irrelevant features. In this way, useful knowledge for solving simple and relevant tasks can be transferred to simplify and speed up the solution of the original high-dimensional FS task. Then, a competitive swarm optimizer is modified to simultaneously solve these relevant FS tasks by transferring useful knowledge among them. Numerous empirical results demonstrate that the proposed EMT-based FS method can obtain a better feature subset than several state-of-the-art FS methods on eighteen high-dimensional datasets. |
| Author | Tan, Kay Chen Xuan, Manlin Jiang, Min Li, Lingjie Ming, Zhong Lin, Qiuzhen |
| Author_xml | – sequence: 1 givenname: Lingjie surname: Li fullname: Li, Lingjie organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 2 givenname: Manlin surname: Xuan fullname: Xuan, Manlin organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 3 givenname: Qiuzhen orcidid: 0000-0003-2415-0401 surname: Lin fullname: Lin, Qiuzhen organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 4 givenname: Min orcidid: 0000-0003-2946-6974 surname: Jiang fullname: Jiang, Min organization: School of Informatics, Xiamen University, Xiamen, China – sequence: 5 givenname: Zhong orcidid: 0000-0001-9310-3460 surname: Ming fullname: Ming, Zhong organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 6 givenname: Kay Chen orcidid: 0000-0002-6802-2463 surname: Tan fullname: Tan, Kay Chen organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong, Hong Kong |
| BookMark | eNp9kDFPwzAQhS0EEm3hByAxRGJOOSdxYo9VaSlSEQMFsUVJem5d3LjYDoh_T6J0QAwstiW_9-7eNySntamRkCsKY0pB3K5mr9NxBFE8jiOWUMZOyICKhIYAUXravoGLMMv42zkZOrcDoAmjYkBwUgezT6Mbr0xd2O_gsdFe-cK9q3oTTPTGWOW3--CrPfu_g8ZgrrRH2ymkscFCbbbhndpj7boQHcyx8I3F4Bk1Vl3wBTmThXZ4ebxH5GU-W00X4fLp_mE6WYZVJBIfIoMC0phxLBkwBmvJZSmybF0iAhMpZ-uKZTFjMhFcRqXgTKZynRUIElHyeERu-tyDNR8NOp_vTGPblVwe8SThAlLIWhXtVZU1zlmU-cGqfVs-p5B3NPOOZt7RzI80W0_2x1O1lLpu3hZK_-u87p0KEX9NgjQBGsc_qr-GEw |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_3390_electronics13234612 crossref_primary_10_1016_j_swevo_2025_102077 crossref_primary_10_48084_etasr_10690 crossref_primary_10_1016_j_knosys_2025_114419 crossref_primary_10_1016_j_asoc_2025_113510 crossref_primary_10_1016_j_asoc_2023_110360 crossref_primary_10_1016_j_cor_2025_107009 crossref_primary_10_1016_j_asoc_2025_112895 crossref_primary_10_1109_ACCESS_2024_3510888 crossref_primary_10_1016_j_ins_2024_121572 crossref_primary_10_1016_j_swevo_2025_101915 crossref_primary_10_1016_j_asoc_2024_112634 crossref_primary_10_1016_j_engappai_2024_108179 crossref_primary_10_1016_j_ins_2025_122189 crossref_primary_10_1016_j_asoc_2024_111407 crossref_primary_10_1007_s12559_024_10386_x crossref_primary_10_1016_j_eswa_2024_126320 crossref_primary_10_1016_j_knosys_2024_111530 crossref_primary_10_1016_j_swevo_2025_102104 crossref_primary_10_1109_TPAMI_2024_3416196 crossref_primary_10_1016_j_engappai_2025_110764 crossref_primary_10_1016_j_eswa_2025_129595 crossref_primary_10_1016_j_swevo_2025_101995 crossref_primary_10_1016_j_ins_2024_120867 crossref_primary_10_1109_TCYB_2025_3535722 crossref_primary_10_1109_ACCESS_2024_3514799 crossref_primary_10_1016_j_swevo_2025_102084 crossref_primary_10_3389_fnins_2025_1609547 crossref_primary_10_1007_s42979_025_04205_9 crossref_primary_10_1016_j_asoc_2023_111141 crossref_primary_10_1016_j_asoc_2024_112574 crossref_primary_10_1109_TETCI_2024_3451695 crossref_primary_10_1016_j_cor_2024_106821 crossref_primary_10_54097_zjz7y433 crossref_primary_10_1145_3760534 crossref_primary_10_1016_j_knosys_2025_113323 crossref_primary_10_1016_j_eswa_2023_121600 crossref_primary_10_1007_s13042_024_02143_1 crossref_primary_10_1016_j_asoc_2024_111979 crossref_primary_10_1016_j_swevo_2024_101765 crossref_primary_10_1016_j_eswa_2025_128874 crossref_primary_10_1016_j_eswa_2025_129325 crossref_primary_10_1016_j_swevo_2024_101821 crossref_primary_10_1016_j_swevo_2024_101661 crossref_primary_10_1109_MCI_2024_3364429 |
| Cites_doi | 10.1109/TEVC.2019.2893614 10.1109/JAS.2019.1911447 10.1007/978-3-319-28270-1_5 10.1016/j.engappai.2014.03.007 10.1109/TCYB.2019.2906383 10.1109/TEVC.2013.2281535 10.1109/TEVC.2016.2600642 10.1109/TEVC.2021.3111209 10.1109/TSMC.2016.2605132 10.1109/TEVC.2022.3155593 10.1016/j.eswa.2019.03.039 10.1109/TCYB.2020.3041212 10.1109/TCYB.2017.2692963 10.1109/TEVC.2018.2869405 10.1109/TITS.2021.3052834 10.1504/IJBIDM.2009.029085 10.1109/TPAMI.2005.159 10.1109/TEVC.2021.3100056 10.1007/978-3-540-76928-6_90 10.1109/TKDE.2011.181 10.1109/TEVC.2022.3222844 10.1109/TCYB.2014.2322602 10.1109/CDC.2017.8263646 10.1109/TCYB.2021.3053944 10.1109/CEC.2019.8790009 10.1016/j.engappai.2022.105249 10.1016/j.neucom.2021.08.154 10.1049/trit.2018.1090 10.1109/EI247390.2019.9062042 10.1109/TEVC.2021.3131236 10.1109/TEVC.2020.3016049 10.1109/TEVC.2019.2906927 10.1109/TEVC.2022.3154416 10.1023/A:1025667309714 10.1109/TSMC.2021.3096220 10.1007/s001580050111 10.1109/TEVC.2021.3068157 10.1109/TCYB.2020.3042243 10.1016/j.knosys.2021.107019 10.1109/CEC.2017.7969407 10.1016/j.ins.2020.08.083 10.1007/s12021-013-9204-3 10.1016/j.asoc.2013.09.018 10.1109/CEC.2007.4424936 10.1109/TEVC.2021.3065707 10.1109/TEVC.2015.2458037 10.1016/j.knosys.2020.105568 10.1109/TCYB.2020.3041325 10.1109/TCYB.2021.3061152 10.1109/TCYB.2017.2714145 10.1109/TEVC.2007.892759 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2023.3254155 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TEVC_2023_3254155 10064013 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: the Guangdong Regional Joint Foundation Key Project under Grant grantid: 2022B1515120076 – fundername: the Research Grants Council of the Hong Kong grantid: PolyU11211521; PolyU15218622 – fundername: Hong Kong Polytechnic University; the Hong Kong Polytechnic University grantid: Project No.: 1-ZE0C funderid: 10.13039/501100004377 – fundername: National Natural Science Foundation of China grantid: 61836005; 61876162; 62272315; 62276222; U21A20512 funderid: 10.13039/501100001809 – fundername: the Shenzhen Science and Technology Innovation Commission grantid: JCYJ20190808164211203; JCYJ20220531101411027 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS HZ~ IEGSK IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IFJZH VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-e50a06358eb50550df8fb977dbee059685dc57355f498f2b985f6fd7ae0feef83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001042026800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Mon Jun 30 03:00:04 EDT 2025 Sat Nov 29 03:13:50 EST 2025 Tue Nov 18 21:00:57 EST 2025 Wed Aug 27 02:56:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-e50a06358eb50550df8fb977dbee059685dc57355f498f2b985f6fd7ae0feef83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2946-6974 0000-0001-9310-3460 0000-0003-2415-0401 0000-0002-6802-2463 0000-0002-9081-4504 |
| PQID | 2844890607 |
| PQPubID | 85418 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_2844890607 crossref_primary_10_1109_TEVC_2023_3254155 ieee_primary_10064013 crossref_citationtrail_10_1109_TEVC_2023_3254155 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref15 zhou (ref32) 2016 ref14 ref58 ref53 ref52 gu (ref55) 2012 ref11 ref10 wang (ref59) 2022 ref17 ref16 ref19 ref18 robnik-sikonjia (ref56) 1997 ref51 ref50 ref46 ref45 ref42 ref41 ref44 yao (ref47) 2021 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 tian (ref48) 2021; 54 ref5 ref35 tang (ref2) 2014 ref34 ref37 ref36 ref31 ref30 ref33 ref1 ref39 ref38 liu (ref40) 2022 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref60 press (ref54) 1992 |
| References_xml | – ident: ref27 doi: 10.1109/TEVC.2019.2893614 – ident: ref9 doi: 10.1109/JAS.2019.1911447 – start-page: 37 year: 2014 ident: ref2 article-title: Feature Selection for Classification: A Review publication-title: Data Classification Algorithms and Applications – ident: ref25 doi: 10.1007/978-3-319-28270-1_5 – ident: ref5 doi: 10.1016/j.engappai.2014.03.007 – ident: ref22 doi: 10.1109/TCYB.2019.2906383 – ident: ref37 doi: 10.1109/TEVC.2013.2281535 – ident: ref44 doi: 10.1109/TEVC.2016.2600642 – ident: ref36 doi: 10.1109/TEVC.2021.3111209 – ident: ref10 doi: 10.1109/TSMC.2016.2605132 – ident: ref49 doi: 10.1109/TEVC.2022.3155593 – ident: ref39 doi: 10.1016/j.eswa.2019.03.039 – ident: ref45 doi: 10.1109/TCYB.2020.3041212 – ident: ref18 doi: 10.1109/TCYB.2017.2692963 – ident: ref16 doi: 10.1109/TEVC.2018.2869405 – year: 2022 ident: ref40 article-title: Evolutionary multitasking for large-scale multiobjective optimization publication-title: IEEE Trans Evol Comput – ident: ref60 doi: 10.1109/TITS.2021.3052834 – start-page: 1 year: 2016 ident: ref32 article-title: Evolutionary multitasking in combinatorial search spaces: A case study in capacitated vehicle routing problem publication-title: Proc IEEE Symp Series Comput Intell (SSCI) – ident: ref57 doi: 10.1504/IJBIDM.2009.029085 – ident: ref1 doi: 10.1109/TPAMI.2005.159 – ident: ref21 doi: 10.1109/TEVC.2021.3100056 – ident: ref51 doi: 10.1007/978-3-540-76928-6_90 – ident: ref14 doi: 10.1109/TKDE.2011.181 – ident: ref17 doi: 10.1109/TEVC.2022.3222844 – ident: ref35 doi: 10.1109/TCYB.2014.2322602 – ident: ref26 doi: 10.1109/CDC.2017.8263646 – ident: ref7 doi: 10.1109/TCYB.2021.3053944 – ident: ref31 doi: 10.1109/CEC.2019.8790009 – year: 1992 ident: ref54 publication-title: Numerical Recipes in C – ident: ref8 doi: 10.1016/j.engappai.2022.105249 – ident: ref58 doi: 10.1016/j.neucom.2021.08.154 – ident: ref30 doi: 10.1049/trit.2018.1090 – ident: ref11 doi: 10.1109/EI247390.2019.9062042 – ident: ref42 doi: 10.1109/TEVC.2021.3131236 – ident: ref38 doi: 10.1109/TEVC.2020.3016049 – ident: ref28 doi: 10.1109/TEVC.2019.2906927 – ident: ref41 doi: 10.1109/TEVC.2022.3154416 – ident: ref3 doi: 10.1023/A:1025667309714 – ident: ref24 doi: 10.1109/TSMC.2021.3096220 – year: 2021 ident: ref47 article-title: Solution of large-scale many-objective optimization problems based on dimension reduction and solving knowledge guided evolutionary algorithm publication-title: IEEE Trans Evol Comput – ident: ref43 doi: 10.1007/s001580050111 – ident: ref23 doi: 10.1109/TEVC.2021.3068157 – ident: ref13 doi: 10.1109/TCYB.2020.3042243 – ident: ref34 doi: 10.1016/j.knosys.2021.107019 – ident: ref29 doi: 10.1109/CEC.2017.7969407 – volume: 54 start-page: 1 year: 2021 ident: ref48 article-title: Evolutionary large-scale multi-objective optimization: A survey publication-title: ACM Comput Surveys – ident: ref6 doi: 10.1016/j.ins.2020.08.083 – start-page: 266 year: 2012 ident: ref55 article-title: Generalized fisher score for feature selection publication-title: Proc Conf UAI – ident: ref4 doi: 10.1007/s12021-013-9204-3 – ident: ref50 doi: 10.1016/j.asoc.2013.09.018 – ident: ref53 doi: 10.1109/CEC.2007.4424936 – ident: ref33 doi: 10.1109/TEVC.2021.3065707 – ident: ref20 doi: 10.1109/TEVC.2015.2458037 – ident: ref19 doi: 10.1016/j.knosys.2020.105568 – year: 2022 ident: ref59 article-title: A surrogate-assisted differential evolution algorithm for high-dimensional expensive optimization problems publication-title: IEEE Trans Cybern – ident: ref46 doi: 10.1109/TCYB.2020.3041325 – ident: ref12 doi: 10.1109/TCYB.2021.3061152 – start-page: 296 year: 1997 ident: ref56 article-title: An adaption of Relief for attribute estimation in regression publication-title: Proc Int Conf Mach Learn – ident: ref15 doi: 10.1109/TCYB.2017.2714145 – ident: ref52 doi: 10.1109/TEVC.2007.892759 |
| SSID | ssj0014519 |
| Score | 2.6214297 |
| Snippet | Recently, evolutionary multitasking (EMT) has been successfully used in the field of high-dimensional classification. However, the generation of multiple tasks... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Classification competitive swarm optimizer Convergence evolutionary algorithm Evolutionary algorithms evolutionary multitasking Feature extraction Feature selection Filtering Filtration high-dimensional classification Knowledge management Knowledge transfer Multitasking Production methods Search problems Task analysis |
| Title | An Evolutionary Multitasking Algorithm with Multiple Filtering for High-Dimensional Feature Selection |
| URI | https://ieeexplore.ieee.org/document/10064013 https://www.proquest.com/docview/2844890607 |
| Volume | 27 |
| WOSCitedRecordID | wos001042026800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46fNAHrxOnU_Lgk9AZ12RJHodu-CSCF_ZW2uZEB3Mb3QX89-YkmQxEwaeWNimlX9LzJefyEXJppCxSw1WSpgISLlieaCV4UgArnEEROaS5F5uQDw9qMNCPMVnd58IAgA8-gxaeel--mZQL3CpzMxz9TqhRuymlDMla3y4DrJMSoum1o4xqEF2YN0xfP_deb1uoE95K3XroBtP61oyQV1X58Sv29qW_98832ye7kUjSbkD-gGzA-JDsrUQaaJyzh2RnreLgEYHumPaWcbjl1ScNCbj5DHfMaXf0NqmG8_cPituz4d50BLQ_RJ86tnAUl2JoSHKHqgChogdFGrmogD55TR13rU5e-r3n2_skKi0kZVvzeQIOI8dVhILCMSLBjFW2cMzQFACoz6OEKYV01MRyrWy7cHDajjUyB2YBrEqPSW08GcMJoWW75MZwabRVvMTgVi7cQep2R7GU2wZhq0-flbEMOaphjDK_HGE6Q7QyRCuLaDXI1XeXaajB8VfjOsKz1jAg0yDNFcBZnKazzNlmrjTrMHn6S7czso1PDyF_TVKbVws4J1vlcj6cVRd-BH4BAIvY8Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFH6MdrD10G5dR9Ommw47DZwpthRLx5AmtKwLg2UjN2NbT10gTYqTFPrfV09SSmBssJONLWHjT_L7pPfjA_hk8rzKjFBJlklMhORlopUUSYW8cgZFlpiVXmwiH4_VdKq_x2R1nwuDiD74DDt06n35ZllvaKvMzXDyO5FG7b4UIu2GdK1npwFVSgnx9NqRRjWNTswu118mw1-DDimFdzK3IupSYt-OGfK6Kn_8jL2FGR3957u9gcNIJVk_YP8WXuDiGI62Mg0sztpjONipOfgOsL9gw4c44MrmkYUU3HJFe-asP79dNrP17ztGG7Th3v0c2WhGXnVq4Uguo-CQ5JJ0AUJND0ZEctMg--FVddy1E_g5Gk4GV0nUWkjqVIt1gg4lx1akwspxIsmNVbZy3NBUiKTQo6SpZe7IiRVa2bRygNqeNXmJ3CJalb2HvcVygafA6rQWxojcaKtETeGtQrpDrtOe4pmwLeDbT1_UsRA56WHMC78g4bogtApCq4hoteDzc5f7UIXjX41PCJ6dhgGZFrS3ABdxoq4KZ52F0rzH87O_dPsIr64m326Km-vx13N4TU8KAYBt2Fs3G7yAl_XDerZqPvjR-ARvqtw4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Evolutionary+Multitasking+Algorithm+With+Multiple+Filtering+for+High-Dimensional+Feature+Selection&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Li%2C+Lingjie&rft.au=Xuan%2C+Manlin&rft.au=Lin%2C+Qiuzhen&rft.au=Jiang%2C+Min&rft.date=2023-08-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=27&rft.issue=4&rft.spage=802&rft.epage=816&rft_id=info:doi/10.1109%2FTEVC.2023.3254155&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2023_3254155 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |