An Evolutionary Multitasking Algorithm with Multiple Filtering for High-Dimensional Feature Selection

Recently, evolutionary multitasking (EMT) has been successfully used in the field of high-dimensional classification. However, the generation of multiple tasks in the existing EMT-based feature selection (FS) methods is relatively simple, using only the Relief-F method to collect related features wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 27; H. 4; S. 1
Hauptverfasser: Li, Lingjie, Xuan, Manlin, Lin, Qiuzhen, Jiang, Min, Ming, Zhong, Tan, Kay Chen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recently, evolutionary multitasking (EMT) has been successfully used in the field of high-dimensional classification. However, the generation of multiple tasks in the existing EMT-based feature selection (FS) methods is relatively simple, using only the Relief-F method to collect related features with similar importance into one task, which cannot provide more diversified tasks for knowledge transfer. Thus, this paper devises a new EMT algorithm for FS in high-dimensional classification, which first adopts different filtering methods to produce multiple tasks and then modifies a competitive swarm optimizer to efficiently solve these related tasks via knowledge transfer. First, a diversified multiple task generation method is designed based on multiple filtering methods, which generates several relevant low-dimensional FS tasks by eliminating irrelevant features. In this way, useful knowledge for solving simple and relevant tasks can be transferred to simplify and speed up the solution of the original high-dimensional FS task. Then, a competitive swarm optimizer is modified to simultaneously solve these relevant FS tasks by transferring useful knowledge among them. Numerous empirical results demonstrate that the proposed EMT-based FS method can obtain a better feature subset than several state-of-the-art FS methods on eighteen high-dimensional datasets.
AbstractList Recently, evolutionary multitasking (EMT) has been successfully used in the field of high-dimensional classification. However, the generation of multiple tasks in the existing EMT-based feature selection (FS) methods is relatively simple, using only the Relief-[Formula Omitted] method to collect related features with similar importance into one task, which cannot provide more diversified tasks for knowledge transfer. Thus, this article devises a new EMT algorithm for FS in high-dimensional classification, which first adopts different filtering methods to produce multiple tasks and then modifies a competitive swarm optimizer (CSO) to efficiently solve these related tasks via knowledge transfer. First, a diversified multiple task generation method is designed based on multiple filtering methods, which generates several relevant low-dimensional FS tasks by eliminating irrelevant features. In this way, useful knowledge for solving simple and relevant tasks can be transferred to simplify and speed up the solution of the original high-dimensional FS task. Then, a CSO is modified to simultaneously solve these relevant FS tasks by transferring useful knowledge among them. Numerous empirical results demonstrate that the proposed EMT-based FS method can obtain a better feature subset than several state-of-the-art FS methods on 18 high-dimensional datasets.
Recently, evolutionary multitasking (EMT) has been successfully used in the field of high-dimensional classification. However, the generation of multiple tasks in the existing EMT-based feature selection (FS) methods is relatively simple, using only the Relief-F method to collect related features with similar importance into one task, which cannot provide more diversified tasks for knowledge transfer. Thus, this paper devises a new EMT algorithm for FS in high-dimensional classification, which first adopts different filtering methods to produce multiple tasks and then modifies a competitive swarm optimizer to efficiently solve these related tasks via knowledge transfer. First, a diversified multiple task generation method is designed based on multiple filtering methods, which generates several relevant low-dimensional FS tasks by eliminating irrelevant features. In this way, useful knowledge for solving simple and relevant tasks can be transferred to simplify and speed up the solution of the original high-dimensional FS task. Then, a competitive swarm optimizer is modified to simultaneously solve these relevant FS tasks by transferring useful knowledge among them. Numerous empirical results demonstrate that the proposed EMT-based FS method can obtain a better feature subset than several state-of-the-art FS methods on eighteen high-dimensional datasets.
Author Tan, Kay Chen
Xuan, Manlin
Jiang, Min
Li, Lingjie
Ming, Zhong
Lin, Qiuzhen
Author_xml – sequence: 1
  givenname: Lingjie
  surname: Li
  fullname: Li, Lingjie
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Manlin
  surname: Xuan
  fullname: Xuan, Manlin
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 3
  givenname: Qiuzhen
  orcidid: 0000-0003-2415-0401
  surname: Lin
  fullname: Lin, Qiuzhen
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 4
  givenname: Min
  orcidid: 0000-0003-2946-6974
  surname: Jiang
  fullname: Jiang, Min
  organization: School of Informatics, Xiamen University, Xiamen, China
– sequence: 5
  givenname: Zhong
  orcidid: 0000-0001-9310-3460
  surname: Ming
  fullname: Ming, Zhong
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 6
  givenname: Kay Chen
  orcidid: 0000-0002-6802-2463
  surname: Tan
  fullname: Tan, Kay Chen
  organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
BookMark eNp9kDFPwzAQhS0EEm3hByAxRGJOOSdxYo9VaSlSEQMFsUVJem5d3LjYDoh_T6J0QAwstiW_9-7eNySntamRkCsKY0pB3K5mr9NxBFE8jiOWUMZOyICKhIYAUXravoGLMMv42zkZOrcDoAmjYkBwUgezT6Mbr0xd2O_gsdFe-cK9q3oTTPTGWOW3--CrPfu_g8ZgrrRH2ymkscFCbbbhndpj7boQHcyx8I3F4Bk1Vl3wBTmThXZ4ebxH5GU-W00X4fLp_mE6WYZVJBIfIoMC0phxLBkwBmvJZSmybF0iAhMpZ-uKZTFjMhFcRqXgTKZynRUIElHyeERu-tyDNR8NOp_vTGPblVwe8SThAlLIWhXtVZU1zlmU-cGqfVs-p5B3NPOOZt7RzI80W0_2x1O1lLpu3hZK_-u87p0KEX9NgjQBGsc_qr-GEw
CODEN ITEVF5
CitedBy_id crossref_primary_10_3390_electronics13234612
crossref_primary_10_1016_j_swevo_2025_102077
crossref_primary_10_48084_etasr_10690
crossref_primary_10_1016_j_knosys_2025_114419
crossref_primary_10_1016_j_asoc_2025_113510
crossref_primary_10_1016_j_asoc_2023_110360
crossref_primary_10_1016_j_cor_2025_107009
crossref_primary_10_1016_j_asoc_2025_112895
crossref_primary_10_1109_ACCESS_2024_3510888
crossref_primary_10_1016_j_ins_2024_121572
crossref_primary_10_1016_j_swevo_2025_101915
crossref_primary_10_1016_j_asoc_2024_112634
crossref_primary_10_1016_j_engappai_2024_108179
crossref_primary_10_1016_j_ins_2025_122189
crossref_primary_10_1016_j_asoc_2024_111407
crossref_primary_10_1007_s12559_024_10386_x
crossref_primary_10_1016_j_eswa_2024_126320
crossref_primary_10_1016_j_knosys_2024_111530
crossref_primary_10_1016_j_swevo_2025_102104
crossref_primary_10_1109_TPAMI_2024_3416196
crossref_primary_10_1016_j_engappai_2025_110764
crossref_primary_10_1016_j_eswa_2025_129595
crossref_primary_10_1016_j_swevo_2025_101995
crossref_primary_10_1016_j_ins_2024_120867
crossref_primary_10_1109_TCYB_2025_3535722
crossref_primary_10_1109_ACCESS_2024_3514799
crossref_primary_10_1016_j_swevo_2025_102084
crossref_primary_10_3389_fnins_2025_1609547
crossref_primary_10_1007_s42979_025_04205_9
crossref_primary_10_1016_j_asoc_2023_111141
crossref_primary_10_1016_j_asoc_2024_112574
crossref_primary_10_1109_TETCI_2024_3451695
crossref_primary_10_1016_j_cor_2024_106821
crossref_primary_10_54097_zjz7y433
crossref_primary_10_1145_3760534
crossref_primary_10_1016_j_knosys_2025_113323
crossref_primary_10_1016_j_eswa_2023_121600
crossref_primary_10_1007_s13042_024_02143_1
crossref_primary_10_1016_j_asoc_2024_111979
crossref_primary_10_1016_j_swevo_2024_101765
crossref_primary_10_1016_j_eswa_2025_128874
crossref_primary_10_1016_j_eswa_2025_129325
crossref_primary_10_1016_j_swevo_2024_101821
crossref_primary_10_1016_j_swevo_2024_101661
crossref_primary_10_1109_MCI_2024_3364429
Cites_doi 10.1109/TEVC.2019.2893614
10.1109/JAS.2019.1911447
10.1007/978-3-319-28270-1_5
10.1016/j.engappai.2014.03.007
10.1109/TCYB.2019.2906383
10.1109/TEVC.2013.2281535
10.1109/TEVC.2016.2600642
10.1109/TEVC.2021.3111209
10.1109/TSMC.2016.2605132
10.1109/TEVC.2022.3155593
10.1016/j.eswa.2019.03.039
10.1109/TCYB.2020.3041212
10.1109/TCYB.2017.2692963
10.1109/TEVC.2018.2869405
10.1109/TITS.2021.3052834
10.1504/IJBIDM.2009.029085
10.1109/TPAMI.2005.159
10.1109/TEVC.2021.3100056
10.1007/978-3-540-76928-6_90
10.1109/TKDE.2011.181
10.1109/TEVC.2022.3222844
10.1109/TCYB.2014.2322602
10.1109/CDC.2017.8263646
10.1109/TCYB.2021.3053944
10.1109/CEC.2019.8790009
10.1016/j.engappai.2022.105249
10.1016/j.neucom.2021.08.154
10.1049/trit.2018.1090
10.1109/EI247390.2019.9062042
10.1109/TEVC.2021.3131236
10.1109/TEVC.2020.3016049
10.1109/TEVC.2019.2906927
10.1109/TEVC.2022.3154416
10.1023/A:1025667309714
10.1109/TSMC.2021.3096220
10.1007/s001580050111
10.1109/TEVC.2021.3068157
10.1109/TCYB.2020.3042243
10.1016/j.knosys.2021.107019
10.1109/CEC.2017.7969407
10.1016/j.ins.2020.08.083
10.1007/s12021-013-9204-3
10.1016/j.asoc.2013.09.018
10.1109/CEC.2007.4424936
10.1109/TEVC.2021.3065707
10.1109/TEVC.2015.2458037
10.1016/j.knosys.2020.105568
10.1109/TCYB.2020.3041325
10.1109/TCYB.2021.3061152
10.1109/TCYB.2017.2714145
10.1109/TEVC.2007.892759
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2023.3254155
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 1
ExternalDocumentID 10_1109_TEVC_2023_3254155
10064013
Genre orig-research
GrantInformation_xml – fundername: the Guangdong Regional Joint Foundation Key Project under Grant
  grantid: 2022B1515120076
– fundername: the Research Grants Council of the Hong Kong
  grantid: PolyU11211521; PolyU15218622
– fundername: Hong Kong Polytechnic University; the Hong Kong Polytechnic University
  grantid: Project No.: 1-ZE0C
  funderid: 10.13039/501100004377
– fundername: National Natural Science Foundation of China
  grantid: 61836005; 61876162; 62272315; 62276222; U21A20512
  funderid: 10.13039/501100001809
– fundername: the Shenzhen Science and Technology Innovation Commission
  grantid: JCYJ20190808164211203; JCYJ20220531101411027
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
HZ~
IEGSK
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IFJZH
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-e50a06358eb50550df8fb977dbee059685dc57355f498f2b985f6fd7ae0feef83
IEDL.DBID RIE
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001042026800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Mon Jun 30 03:00:04 EDT 2025
Sat Nov 29 03:13:50 EST 2025
Tue Nov 18 21:00:57 EST 2025
Wed Aug 27 02:56:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-e50a06358eb50550df8fb977dbee059685dc57355f498f2b985f6fd7ae0feef83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2946-6974
0000-0001-9310-3460
0000-0003-2415-0401
0000-0002-6802-2463
0000-0002-9081-4504
PQID 2844890607
PQPubID 85418
PageCount 1
ParticipantIDs proquest_journals_2844890607
crossref_primary_10_1109_TEVC_2023_3254155
ieee_primary_10064013
crossref_citationtrail_10_1109_TEVC_2023_3254155
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
zhou (ref32) 2016
ref14
ref58
ref53
ref52
gu (ref55) 2012
ref11
ref10
wang (ref59) 2022
ref17
ref16
ref19
ref18
robnik-sikonjia (ref56) 1997
ref51
ref50
ref46
ref45
ref42
ref41
ref44
yao (ref47) 2021
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
tian (ref48) 2021; 54
ref5
ref35
tang (ref2) 2014
ref34
ref37
ref36
ref31
ref30
ref33
ref1
ref39
ref38
liu (ref40) 2022
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref60
press (ref54) 1992
References_xml – ident: ref27
  doi: 10.1109/TEVC.2019.2893614
– ident: ref9
  doi: 10.1109/JAS.2019.1911447
– start-page: 37
  year: 2014
  ident: ref2
  article-title: Feature Selection for Classification: A Review
  publication-title: Data Classification Algorithms and Applications
– ident: ref25
  doi: 10.1007/978-3-319-28270-1_5
– ident: ref5
  doi: 10.1016/j.engappai.2014.03.007
– ident: ref22
  doi: 10.1109/TCYB.2019.2906383
– ident: ref37
  doi: 10.1109/TEVC.2013.2281535
– ident: ref44
  doi: 10.1109/TEVC.2016.2600642
– ident: ref36
  doi: 10.1109/TEVC.2021.3111209
– ident: ref10
  doi: 10.1109/TSMC.2016.2605132
– ident: ref49
  doi: 10.1109/TEVC.2022.3155593
– ident: ref39
  doi: 10.1016/j.eswa.2019.03.039
– ident: ref45
  doi: 10.1109/TCYB.2020.3041212
– ident: ref18
  doi: 10.1109/TCYB.2017.2692963
– ident: ref16
  doi: 10.1109/TEVC.2018.2869405
– year: 2022
  ident: ref40
  article-title: Evolutionary multitasking for large-scale multiobjective optimization
  publication-title: IEEE Trans Evol Comput
– ident: ref60
  doi: 10.1109/TITS.2021.3052834
– start-page: 1
  year: 2016
  ident: ref32
  article-title: Evolutionary multitasking in combinatorial search spaces: A case study in capacitated vehicle routing problem
  publication-title: Proc IEEE Symp Series Comput Intell (SSCI)
– ident: ref57
  doi: 10.1504/IJBIDM.2009.029085
– ident: ref1
  doi: 10.1109/TPAMI.2005.159
– ident: ref21
  doi: 10.1109/TEVC.2021.3100056
– ident: ref51
  doi: 10.1007/978-3-540-76928-6_90
– ident: ref14
  doi: 10.1109/TKDE.2011.181
– ident: ref17
  doi: 10.1109/TEVC.2022.3222844
– ident: ref35
  doi: 10.1109/TCYB.2014.2322602
– ident: ref26
  doi: 10.1109/CDC.2017.8263646
– ident: ref7
  doi: 10.1109/TCYB.2021.3053944
– ident: ref31
  doi: 10.1109/CEC.2019.8790009
– year: 1992
  ident: ref54
  publication-title: Numerical Recipes in C
– ident: ref8
  doi: 10.1016/j.engappai.2022.105249
– ident: ref58
  doi: 10.1016/j.neucom.2021.08.154
– ident: ref30
  doi: 10.1049/trit.2018.1090
– ident: ref11
  doi: 10.1109/EI247390.2019.9062042
– ident: ref42
  doi: 10.1109/TEVC.2021.3131236
– ident: ref38
  doi: 10.1109/TEVC.2020.3016049
– ident: ref28
  doi: 10.1109/TEVC.2019.2906927
– ident: ref41
  doi: 10.1109/TEVC.2022.3154416
– ident: ref3
  doi: 10.1023/A:1025667309714
– ident: ref24
  doi: 10.1109/TSMC.2021.3096220
– year: 2021
  ident: ref47
  article-title: Solution of large-scale many-objective optimization problems based on dimension reduction and solving knowledge guided evolutionary algorithm
  publication-title: IEEE Trans Evol Comput
– ident: ref43
  doi: 10.1007/s001580050111
– ident: ref23
  doi: 10.1109/TEVC.2021.3068157
– ident: ref13
  doi: 10.1109/TCYB.2020.3042243
– ident: ref34
  doi: 10.1016/j.knosys.2021.107019
– ident: ref29
  doi: 10.1109/CEC.2017.7969407
– volume: 54
  start-page: 1
  year: 2021
  ident: ref48
  article-title: Evolutionary large-scale multi-objective optimization: A survey
  publication-title: ACM Comput Surveys
– ident: ref6
  doi: 10.1016/j.ins.2020.08.083
– start-page: 266
  year: 2012
  ident: ref55
  article-title: Generalized fisher score for feature selection
  publication-title: Proc Conf UAI
– ident: ref4
  doi: 10.1007/s12021-013-9204-3
– ident: ref50
  doi: 10.1016/j.asoc.2013.09.018
– ident: ref53
  doi: 10.1109/CEC.2007.4424936
– ident: ref33
  doi: 10.1109/TEVC.2021.3065707
– ident: ref20
  doi: 10.1109/TEVC.2015.2458037
– ident: ref19
  doi: 10.1016/j.knosys.2020.105568
– year: 2022
  ident: ref59
  article-title: A surrogate-assisted differential evolution algorithm for high-dimensional expensive optimization problems
  publication-title: IEEE Trans Cybern
– ident: ref46
  doi: 10.1109/TCYB.2020.3041325
– ident: ref12
  doi: 10.1109/TCYB.2021.3061152
– start-page: 296
  year: 1997
  ident: ref56
  article-title: An adaption of Relief for attribute estimation in regression
  publication-title: Proc Int Conf Mach Learn
– ident: ref15
  doi: 10.1109/TCYB.2017.2714145
– ident: ref52
  doi: 10.1109/TEVC.2007.892759
SSID ssj0014519
Score 2.6214297
Snippet Recently, evolutionary multitasking (EMT) has been successfully used in the field of high-dimensional classification. However, the generation of multiple tasks...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Classification
competitive swarm optimizer
Convergence
evolutionary algorithm
Evolutionary algorithms
evolutionary multitasking
Feature extraction
Feature selection
Filtering
Filtration
high-dimensional classification
Knowledge management
Knowledge transfer
Multitasking
Production methods
Search problems
Task analysis
Title An Evolutionary Multitasking Algorithm with Multiple Filtering for High-Dimensional Feature Selection
URI https://ieeexplore.ieee.org/document/10064013
https://www.proquest.com/docview/2844890607
Volume 27
WOSCitedRecordID wos001042026800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46fNAHrxOnU_Lgk9AZ12RJHodu-CSCF_ZW2uZEB3Mb3QX89-YkmQxEwaeWNimlX9LzJefyEXJppCxSw1WSpgISLlieaCV4UgArnEEROaS5F5uQDw9qMNCPMVnd58IAgA8-gxaeel--mZQL3CpzMxz9TqhRuymlDMla3y4DrJMSoum1o4xqEF2YN0xfP_deb1uoE95K3XroBtP61oyQV1X58Sv29qW_98832ye7kUjSbkD-gGzA-JDsrUQaaJyzh2RnreLgEYHumPaWcbjl1ScNCbj5DHfMaXf0NqmG8_cPituz4d50BLQ_RJ86tnAUl2JoSHKHqgChogdFGrmogD55TR13rU5e-r3n2_skKi0kZVvzeQIOI8dVhILCMSLBjFW2cMzQFACoz6OEKYV01MRyrWy7cHDajjUyB2YBrEqPSW08GcMJoWW75MZwabRVvMTgVi7cQep2R7GU2wZhq0-flbEMOaphjDK_HGE6Q7QyRCuLaDXI1XeXaajB8VfjOsKz1jAg0yDNFcBZnKazzNlmrjTrMHn6S7czso1PDyF_TVKbVws4J1vlcj6cVRd-BH4BAIvY8Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFH6MdrD10G5dR9Ommw47DZwpthRLx5AmtKwLg2UjN2NbT10gTYqTFPrfV09SSmBssJONLWHjT_L7pPfjA_hk8rzKjFBJlklMhORlopUUSYW8cgZFlpiVXmwiH4_VdKq_x2R1nwuDiD74DDt06n35ZllvaKvMzXDyO5FG7b4UIu2GdK1npwFVSgnx9NqRRjWNTswu118mw1-DDimFdzK3IupSYt-OGfK6Kn_8jL2FGR3957u9gcNIJVk_YP8WXuDiGI62Mg0sztpjONipOfgOsL9gw4c44MrmkYUU3HJFe-asP79dNrP17ztGG7Th3v0c2WhGXnVq4Uguo-CQ5JJ0AUJND0ZEctMg--FVddy1E_g5Gk4GV0nUWkjqVIt1gg4lx1akwspxIsmNVbZy3NBUiKTQo6SpZe7IiRVa2bRygNqeNXmJ3CJalb2HvcVygafA6rQWxojcaKtETeGtQrpDrtOe4pmwLeDbT1_UsRA56WHMC78g4bogtApCq4hoteDzc5f7UIXjX41PCJ6dhgGZFrS3ABdxoq4KZ52F0rzH87O_dPsIr64m326Km-vx13N4TU8KAYBt2Fs3G7yAl_XDerZqPvjR-ARvqtw4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Evolutionary+Multitasking+Algorithm+With+Multiple+Filtering+for+High-Dimensional+Feature+Selection&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Li%2C+Lingjie&rft.au=Xuan%2C+Manlin&rft.au=Lin%2C+Qiuzhen&rft.au=Jiang%2C+Min&rft.date=2023-08-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=27&rft.issue=4&rft.spage=802&rft.epage=816&rft_id=info:doi/10.1109%2FTEVC.2023.3254155&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2023_3254155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon