DIMCA: An Area-Efficient Digital In-Memory Computing Macro Featuring Approximate Arithmetic Hardware in 28 nm

Recent SRAM-based in-memory computing (IMC) hardware demonstrates high energy efficiency and throughput for matrix-vector multiplication (MVM), the dominant kernel for deep neural networks (DNNs). Earlier IMC macros have employed analog-mixed-signal (AMS) arithmetic hardware. However, those so-calle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits Jg. 59; H. 3; S. 960 - 971
Hauptverfasser: Lin, Chuan-Tung, Wang, Dewei, Zhang, Bo, Chen, Gregory K., Knag, Phil C., Krishnamurthy, Ram Kumar, Seok, Mingoo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9200, 1558-173X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recent SRAM-based in-memory computing (IMC) hardware demonstrates high energy efficiency and throughput for matrix-vector multiplication (MVM), the dominant kernel for deep neural networks (DNNs). Earlier IMC macros have employed analog-mixed-signal (AMS) arithmetic hardware. However, those so-called AIMCs suffer from process, voltage, and temperature (PVT) variations. Digital IMC (DIMC) macros, on the other hand, exhibit better robustness against PVT variations, but they tend to require more silicon area. This article proposes novel DIMC hardware featuring approximate arithmetic (DIMCA) to improve area efficiency without hurting compute density (CD). We also propose an approximation-aware training model and a customized number format to compensate for the accuracy degradation caused by the approximation hardware. We prototyped the test chip in 28-nm CMOS. It contains two versions: the DIMCA with single-approximate hardware (DIMCA1) and DIMCA with double-approximate hardware (DIMCA2). The measurement results show that DIMCA1 supports a 4 b-activation and 1 b-weight (4 b/1 b) CNN model, achieving 327 kb/mm2, 458-990 TOPS/W (normalized to 1 b/1 b), 8.27-392 TOPS/mm2 (normalized to 1 b/1 b), and 90.41% accuracy for CIFAR-10. DIMCA2 supports a 1 b/1 b CNN model, achieving 485 kb/mm2, 932-2219 TOPS/W, 14.4-607 TOPS/mm2, and 86.96% accuracy for CIFAR-10.
AbstractList Recent SRAM-based in-memory computing (IMC) hardware demonstrates high energy efficiency and throughput for matrix–vector multiplication (MVM), the dominant kernel for deep neural networks (DNNs). Earlier IMC macros have employed analog-mixed-signal (AMS) arithmetic hardware. However, those so-called AIMCs suffer from process, voltage, and temperature (PVT) variations. Digital IMC (DIMC) macros, on the other hand, exhibit better robustness against PVT variations, but they tend to require more silicon area. This article proposes novel DIMC hardware featuring approximate arithmetic (DIMCA) to improve area efficiency without hurting compute density (CD). We also propose an approximation-aware training model and a customized number format to compensate for the accuracy degradation caused by the approximation hardware. We prototyped the test chip in 28-nm CMOS. It contains two versions: the DIMCA with single-approximate hardware (DIMCA1) and DIMCA with double-approximate hardware (DIMCA2). The measurement results show that DIMCA1 supports a 4 b-activation and 1 b-weight (4 b/1 b) CNN model, achieving 327 kb/mm2, 458–990 TOPS/W (normalized to 1 b/1 b), 8.27–392 TOPS/mm2 (normalized to 1 b/1 b), and 90.41% accuracy for CIFAR-10. DIMCA2 supports a 1 b/1 b CNN model, achieving 485 kb/mm2, 932–2219 TOPS/W, 14.4–607 TOPS/mm2, and 86.96% accuracy for CIFAR-10.
Author Lin, Chuan-Tung
Krishnamurthy, Ram Kumar
Seok, Mingoo
Zhang, Bo
Chen, Gregory K.
Wang, Dewei
Knag, Phil C.
Author_xml – sequence: 1
  givenname: Chuan-Tung
  orcidid: 0000-0002-7345-1916
  surname: Lin
  fullname: Lin, Chuan-Tung
  organization: Department of Electrical Engineering, Columbia University, New York, NY, USA
– sequence: 2
  givenname: Dewei
  orcidid: 0009-0006-5970-8144
  surname: Wang
  fullname: Wang, Dewei
  organization: Department of Electrical Engineering, Columbia University, New York, NY, USA
– sequence: 3
  givenname: Bo
  orcidid: 0000-0003-3603-6016
  surname: Zhang
  fullname: Zhang, Bo
  organization: Department of Electrical Engineering, Columbia University, New York, NY, USA
– sequence: 4
  givenname: Gregory K.
  orcidid: 0000-0002-4813-3844
  surname: Chen
  fullname: Chen, Gregory K.
  organization: Circuit Research Laboratory, Intel Corporation, Hillsboro, OR, USA
– sequence: 5
  givenname: Phil C.
  orcidid: 0000-0001-6794-8806
  surname: Knag
  fullname: Knag, Phil C.
  organization: Circuit Research Laboratory, Intel Corporation, Hillsboro, OR, USA
– sequence: 6
  givenname: Ram Kumar
  orcidid: 0000-0002-2428-7099
  surname: Krishnamurthy
  fullname: Krishnamurthy, Ram Kumar
  organization: Circuit Research Laboratory, Intel Corporation, Hillsboro, OR, USA
– sequence: 7
  givenname: Mingoo
  orcidid: 0000-0002-9722-0979
  surname: Seok
  fullname: Seok, Mingoo
  email: ms4415@columbia.edu
  organization: Department of Electrical Engineering, Columbia University, New York, NY, USA
BookMark eNp9UE1Lw0AUXETBtvoDBA8LnlP3M9l4C6kfFYsHFbyF1_SlrjSbutmi_nu3tAfx4Okxj5l5b2ZIDl3nkJAzzsacs_zy_umpHAsm5FhKLjXPD8iAa20SnsnXQzJgjJskF4wdk2Hfv0eolOED0k6ms7K4ooWjhUdIrpvG1hZdoBO7tAFWdOqSGbad_6Zl1643wbolnUHtO3qDEDZ-i4v12ndftoWA0caGtxaDrekd-MUneKTWUWGoa0_IUQOrHk_3c0Rebq6fy7vk4fF2WhYPSS1yFRJUKgMOtV4IjpkQDXItEIzRWc5AZRoWDW-EgXnaMBM3BoArOcdMgQCj5Yhc7HzjWx8b7EP13m28iycrkUuhU5WpNLKyHSuG6XuPTVXHxMF2Lniwq4qzatttte222nZb7buNSv5HufYxvf_-V3O-01hE_MUXaSqFkT-h04Xh
CODEN IJSCBC
CitedBy_id crossref_primary_10_1109_LSSC_2024_3369058
crossref_primary_10_1109_TVLSI_2025_3576889
crossref_primary_10_1109_JSSC_2024_3362699
crossref_primary_10_1109_JSSC_2024_3463691
crossref_primary_10_1109_TCSI_2024_3497187
crossref_primary_10_1016_j_vlsi_2025_102525
Cites_doi 10.1109/isscc42614.2022.9731762
10.1109/JSSC.2020.2992886
10.1109/isscc42614.2022.9731659
10.1109/ICCV48922.2021.00060
10.1109/MSSC.2019.2922889
10.1145/2742060.2743760
10.1109/isscc42613.2021.9365766
10.1109/isscc42613.2021.9365928
10.1109/ISOCC.2015.7401667
10.1109/ISSCC42615.2023.10067720
10.1109/JSSC.2018.2867275
10.1109/JSSC.2019.2939682
10.1109/JSSC.2021.3108344
10.1109/JSSC.2021.3061508
10.1109/isscc42613.2021.9365791
10.1109/isscc42615.2023.10067305
10.1109/MSSC.2022.3182935
10.1109/isscc19947.2020.9063111
10.1007/978-3-030-58452-8_13
10.1109/ISSCC42614.2022.9731754
10.1038/s41565-020-0655-z
10.1109/JSSC.2019.2952773
10.1109/JSSC.2019.2963616
10.1109/CVPR42600.2020.01079
10.1109/JSSC.2016.2616357
10.1109/isscc42614.2022.9731545
10.1109/isscc42614.2022.9731757
10.1109/JSSC.2020.3029586
10.1109/JSSC.2021.3119018
10.1109/CICC53496.2022.9772781
10.1109/JSSC.2019.2899730
10.1109/3.748832
10.1109/VLSITechnologyandCir46769.2022.9830438
10.1109/TCAD.2012.2217962
10.1109/ICCV48922.2021.00986
10.1109/JSSC.2018.2880918
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSSC.2023.3313519
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-173X
EndPage 971
ExternalDocumentID 10_1109_JSSC_2023_3313519
10266328
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: 1919147
  funderid: 10.13039/100000001
– fundername: Semiconductor Research Corporation (SRC)
  grantid: Task 2810.034
  funderid: 10.13039/100000028
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TAE
TN5
UKR
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c294t-e447a1ac5d21e722fe152ea885790a475adf1f28ab6f080a48aa143be74a2a853
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001078947700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9200
IngestDate Sun Nov 09 08:17:37 EST 2025
Sat Nov 29 02:11:55 EST 2025
Tue Nov 18 22:16:04 EST 2025
Wed Aug 27 01:58:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-e447a1ac5d21e722fe152ea885790a475adf1f28ab6f080a48aa143be74a2a853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6794-8806
0000-0002-4813-3844
0000-0002-2428-7099
0000-0003-3603-6016
0000-0002-9722-0979
0000-0002-7345-1916
0009-0006-5970-8144
PQID 2932564746
PQPubID 85482
PageCount 12
ParticipantIDs proquest_journals_2932564746
crossref_citationtrail_10_1109_JSSC_2023_3313519
ieee_primary_10266328
crossref_primary_10_1109_JSSC_2023_3313519
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of solid-state circuits
PublicationTitleAbbrev JSSC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Brown (ref1); 33
References_xml – ident: ref28
  doi: 10.1109/isscc42614.2022.9731762
– ident: ref12
  doi: 10.1109/JSSC.2020.2992886
– ident: ref37
  doi: 10.1109/isscc42614.2022.9731659
– ident: ref4
  doi: 10.1109/ICCV48922.2021.00060
– ident: ref14
  doi: 10.1109/MSSC.2019.2922889
– ident: ref34
  doi: 10.1145/2742060.2743760
– ident: ref25
  doi: 10.1109/isscc42613.2021.9365766
– ident: ref8
  doi: 10.1109/isscc42613.2021.9365928
– ident: ref32
  doi: 10.1109/ISOCC.2015.7401667
– volume: 33
  start-page: 1877
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref1
  article-title: Language models are few-shot learners
– ident: ref31
  doi: 10.1109/ISSCC42615.2023.10067720
– ident: ref35
  doi: 10.1109/JSSC.2018.2867275
– ident: ref23
  doi: 10.1109/JSSC.2019.2939682
– ident: ref18
  doi: 10.1109/JSSC.2021.3108344
– ident: ref24
  doi: 10.1109/JSSC.2021.3061508
– ident: ref9
  doi: 10.1109/isscc42613.2021.9365791
– ident: ref30
  doi: 10.1109/isscc42615.2023.10067305
– ident: ref19
  doi: 10.1109/MSSC.2022.3182935
– ident: ref7
  doi: 10.1109/isscc19947.2020.9063111
– ident: ref3
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref26
  doi: 10.1109/ISSCC42614.2022.9731754
– ident: ref16
  doi: 10.1038/s41565-020-0655-z
– ident: ref21
  doi: 10.1109/JSSC.2019.2952773
– ident: ref11
  doi: 10.1109/JSSC.2019.2963616
– ident: ref2
  doi: 10.1109/CVPR42600.2020.01079
– ident: ref6
  doi: 10.1109/JSSC.2016.2616357
– ident: ref29
  doi: 10.1109/isscc42614.2022.9731545
– ident: ref10
  doi: 10.1109/isscc42614.2022.9731757
– ident: ref17
  doi: 10.1109/JSSC.2020.3029586
– ident: ref15
  doi: 10.1109/JSSC.2021.3119018
– ident: ref20
  doi: 10.1109/CICC53496.2022.9772781
– ident: ref22
  doi: 10.1109/JSSC.2019.2899730
– ident: ref36
  doi: 10.1109/3.748832
– ident: ref27
  doi: 10.1109/VLSITechnologyandCir46769.2022.9830438
– ident: ref33
  doi: 10.1109/TCAD.2012.2217962
– ident: ref5
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref13
  doi: 10.1109/JSSC.2018.2880918
SSID ssj0014481
Score 2.5273652
Snippet Recent SRAM-based in-memory computing (IMC) hardware demonstrates high energy efficiency and throughput for matrix-vector multiplication (MVM), the dominant...
Recent SRAM-based in-memory computing (IMC) hardware demonstrates high energy efficiency and throughput for matrix–vector multiplication (MVM), the dominant...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 960
SubjectTerms Accuracy
Approximate computing
Approximation
approximation-aware training
Arithmetic
Artificial neural networks
Compressors
Computation
Deep learning
Hardware
In-memory computing
in-memory computing (IMC)
Integrated circuit modeling
Mathematical analysis
Multiplication
neural network accelerators
Static random access memory
Title DIMCA: An Area-Efficient Digital In-Memory Computing Macro Featuring Approximate Arithmetic Hardware in 28 nm
URI https://ieeexplore.ieee.org/document/10266328
https://www.proquest.com/docview/2932564746
Volume 59
WOSCitedRecordID wos001078947700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-173X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014481
  issn: 0018-9200
  databaseCode: RIE
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS-wwEA66ePAd_P1wdZUcPD3I2mazTeptWRUVVx6o4K1Mm4mv8LbKuv76752kVRRR8NbDTAj9ks6XTmY-xnZQG3RR5ITVMhdK2kRAoaXwKaVYRi7u1S3zT_XZmbm6Sv82xeqhFgYRw-Uz7PrHkMu3N8W9_1VGO5zCSU-aWTardVIXa72lDOicUcvjxbSDCfsmhRlH6e7J-fmw63XCu71eUKT7EISCqsqnT3GIL4eLP5zZEltoiCQf1MgvsxmsVtivd-0FV9l4_3g0HOzxQUVmCOIgtIuggfh-ee3FQvhxJUb-qu0zr9UdyI2PgCbNPTUMFYx84LuOP5XEbJGGKaf_xr7ukfuU_yNMkJcVl4ZX4zV2eXhwMTwSjbyCKGSqpgKV0hBD0bcyRi2lQ4rlCMb0dRqB0n2wLnbSQJ444pWgDACxqxy1AgkU5n-zVnVT4TrjFoj4SU10pOgriFxqXA5JDs46a5yybRa9vu-saHqPewmM_1k4g0Rp5iHKPERZA1Gb_Xlzua0bb3xnvOYxeWdYw9FmnVdUs2Zv3mVEcIjnKa2SjS_cNtk8ja7qq2Yd1ppO7nGLzRUP0_Jush2W3QssftNv
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BQaIc-CxioYAPnJC8OF5n7XBbbVt1YXeF1CL1Fk3iMURi02q75ePfM3bSqgiBxC2HGcfKizPPGc88gNdkHQWlgvRWV9JoP5ZYWy1jSinTKmSjrmX-3C6X7uSk-NgXq6daGCJKh89oGC9TLt-f1hfxVxmvcA4nI-1uwq3cGK26cq2rpAHvNDqBvIzXMKPfJzEzVbx9f3Q0HUal8OFolDTpfgtDSVflj49xijAH9_9zbg_gXk8lxaTD_iHcoPYR3L3WYPAxrPZmi-nknZi0bEYo91PDCB5I7DWfo1yImLVyEQ_b_hSdvgO7iQXypEUkh6mGUUxi3_EfDXNb4mGazZdVrHwUMen_HdckmlZoJ9rVDnw62D-eHspeYEHWujAbScZYzLDOvc7Iah2Iozmhc7ktFBqbow9Z0A6rcWBmicYhMr-qyBrUyIH-CWy1py09BeGRqZ-2TEjq3KAKhQsVjisMPngXjB-AunzeZd13H48iGF_LtAtRRRkhKiNEZQ_RAN5cuZx1rTf-ZbwTMblm2MExgN1LVMt-dZ6XTHGY6Rlrxs_-4vYK7hweL-blfLb88By2-U6mO3i2C1ub9QW9gNv1t01zvn6ZXsFfVXDWtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DIMCA%3A+An+Area-Efficient+Digital+In-Memory+Computing+Macro+Featuring+Approximate+Arithmetic+Hardware+in+28+nm&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Chuan-Tung%2C+Lin&rft.au=Wang%2C+Dewei&rft.au=Zhang%2C+Bo&rft.au=Chen%2C+Gregory+K&rft.date=2024-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9200&rft.eissn=1558-173X&rft.volume=59&rft.issue=3&rft.spage=960&rft_id=info:doi/10.1109%2FJSSC.2023.3313519&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon