Moving forward in water distribution network leak identification through an innovative features engineering step

In Italy an average of 40% of the water in transit in Water Distribution Networks (WDNs) is lost, which represents a significant economic loss, and, because of the corresponding energy waste, also a considerable environmental damage. Over the years various methods have been developed for detecting a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital signal processing Jg. 168; S. 105603
Hauptverfasser: Damonti, Elvio, Bernasconi, Giancarlo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.01.2026
Schlagworte:
ISSN:1051-2004
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In Italy an average of 40% of the water in transit in Water Distribution Networks (WDNs) is lost, which represents a significant economic loss, and, because of the corresponding energy waste, also a considerable environmental damage. Over the years various methods have been developed for detecting and locating leaks in WDNs, and, in particular, several algorithms have been implemented that use Convolutional Neural Networks (CNNs). They are all based on a training phase run on a representative subset of the WDN data, and the main differences between the various implementations are in the data pre-processing and in the CNN configuration. This paper proposes a new fully Data-Driven approach, where a preliminar features engineering step, performed by a visual analysis of specific data patterns, both in the time domain and in the Fourier domain, allowed us to conceive and identify two paramount features engineering steps: a new effective data pre-processing algorythm and a new configuration of CNN that uses an Overcomplete Autoencoder (Overcomplete AE) topology with residual blocks. These two steps, described in detail in this paper, allowed us to better highlight and identify the anomalies caused by leaks in WDN pressures time series and they permitted, in association with a new original automatic analysis of the reconstruction error made by the Autoencoder, to achieve results that are on the top of the current state of art. Specifically, the whole innovative method is presented in detail exploiting publicly available data, so to be easily reproducible, and, more specifically, for this purpose, the benchmark was run on a synthetic 'LeakDB' dataset of 500 scenarios and the outcomes were then validated through different data obtained from a second and more complex synthetic 'LeakDB' dataset containing 1000 scenarios. Both these datasets are related to a District Metering Area (DMA) of the Hanoi WDN and both are publicly available.
AbstractList In Italy an average of 40% of the water in transit in Water Distribution Networks (WDNs) is lost, which represents a significant economic loss, and, because of the corresponding energy waste, also a considerable environmental damage. Over the years various methods have been developed for detecting and locating leaks in WDNs, and, in particular, several algorithms have been implemented that use Convolutional Neural Networks (CNNs). They are all based on a training phase run on a representative subset of the WDN data, and the main differences between the various implementations are in the data pre-processing and in the CNN configuration. This paper proposes a new fully Data-Driven approach, where a preliminar features engineering step, performed by a visual analysis of specific data patterns, both in the time domain and in the Fourier domain, allowed us to conceive and identify two paramount features engineering steps: a new effective data pre-processing algorythm and a new configuration of CNN that uses an Overcomplete Autoencoder (Overcomplete AE) topology with residual blocks. These two steps, described in detail in this paper, allowed us to better highlight and identify the anomalies caused by leaks in WDN pressures time series and they permitted, in association with a new original automatic analysis of the reconstruction error made by the Autoencoder, to achieve results that are on the top of the current state of art. Specifically, the whole innovative method is presented in detail exploiting publicly available data, so to be easily reproducible, and, more specifically, for this purpose, the benchmark was run on a synthetic 'LeakDB' dataset of 500 scenarios and the outcomes were then validated through different data obtained from a second and more complex synthetic 'LeakDB' dataset containing 1000 scenarios. Both these datasets are related to a District Metering Area (DMA) of the Hanoi WDN and both are publicly available.
ArticleNumber 105603
Author Damonti, Elvio
Bernasconi, Giancarlo
Author_xml – sequence: 1
  givenname: Elvio
  orcidid: 0009-0009-5657-6512
  surname: Damonti
  fullname: Damonti, Elvio
  email: elvio.damonti@polimi.it
– sequence: 2
  givenname: Giancarlo
  orcidid: 0000-0001-9964-4006
  surname: Bernasconi
  fullname: Bernasconi, Giancarlo
  email: giancarlo.bernasconi@polimi.it
BookMark eNp9kM1OAyEQgDnUxLb6AN54ga3A7rJsPJnGnyY1XvRMWBha2goboNv49m6tZ0_zl29m8s3QxAcPCN1RsqCE8vvdwqR-wQirx7rmpJyg6ZjQghFSXaNZSjtCSFMxPkX9Wxic32Ab4klFg53HJ5UhYuNSjq47Zhc89pBPIe7xAdQeOwM-O-u0-p3lbQzHzRYrP8I-DGN3AGxB5WOEhMFvnAeI5yMpQ3-Drqw6JLj9i3P0-fz0sXwt1u8vq-XjutCsrXIBjAteGlV3trZE8Iq0Vtmy6cq2qwUBXoFqNTSEKi0oZ7UVQjStMLTVbcmqco7oZa-OIaUIVvbRfan4LSmRZ01yJ0dN8qxJXjSNzMOFgfGxwUGUSTvwGoyLoLM0wf1D_wD_YXbO
Cites_doi 10.1109/ACCESS.2018.2885444
10.1007/BF01386390
10.1080/1573062X.2017.1279191
10.2166/hydro.2015.023
10.1080/08839514.2012.670974
10.1061/(ASCE)WR.1943-5452.0000339
10.1109/TGRS.2020.2984951
10.2352/ISSN.2470-1173.2018.07.MWSF-214
10.1080/1573062X.2014.988733
10.3390/smartcities4040069
10.1016/j.jprocont.2020.08.003
10.1061/(ASCE)WR.1943-5452.0000030
10.2166/aqua.2018.176
10.1007/s00521-021-06666-4
10.21105/joss.05947
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.dsp.2025.105603
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_dsp_2025_105603
S1051200425006256
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADFGL
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c294t-e26863da5bf5f086409faf37b39b580e64ea9ce701ac81625f888798d19c93243
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001582446700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-2004
IngestDate Thu Nov 27 01:02:44 EST 2025
Sat Nov 29 17:01:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Water pressure data features engineering
Convolutional neural network (CNN) Overcomplete Autoencoder application
Machine learning methods for water leak detection and localization
CNN Overcomplete Autoencoder inference errors analysis
Leak identification in Water Distribution Networks (WDN)
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-e26863da5bf5f086409faf37b39b580e64ea9ce701ac81625f888798d19c93243
ORCID 0009-0009-5657-6512
0000-0001-9964-4006
OpenAccessLink https://dx.doi.org/10.1016/j.dsp.2025.105603
ParticipantIDs crossref_primary_10_1016_j_dsp_2025_105603
elsevier_sciencedirect_doi_10_1016_j_dsp_2025_105603
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationTitle Digital signal processing
PublicationYear 2026
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Rossman, L. “Epanet 2.0 user manual. 2000.
Punukollu, Arunachalam, Srinivasa Raju (bib0018) 2022
Irofti, Stoican, Puig (bib0009) 2020
NTNU, Martin Bjerke. Leak detection in water distribution networks using gated recurrent neural networks. 2019.
Sarkamaryan, Haghighi, Adib (bib0002) 2018
(bib0015) 2024; 145
Mashford, Silva, Burn, Marney (bib0005) 2012
Chan, Chin, Zhong (bib0010) 2018
Guo, Yu, Liu, Ma, Wu, Xu, Wang, Smith, Wu (bib0003) 2021
Kyriakou, Demetriades, Vrachimis, Eliades, Polycarpou (bib0030) 2023
Mashhadi, Shahrour, Attoue, El Khattabi, Aljer (bib0008) 2021
Romano, Kapelan, Savi (bib0011) 2014
Kyriakou, M.S., Demetriades, M., Vrachimis, S.G., Eliades, D.G., .& Polycarpou, M.M.
Wu, Liu (bib0021) 2017; 14
Ugo Leonzio, Bestagini, Marcon, Quarta, Tubaro (bib0016) 2023
Mounce, Boxall, Machell (bib0001) 2010
Karney (bib0004) 2002
Adachi, Takahashi, Kurisu, Tadokoro (bib0007) 2014
D. Bank, N. Koenigstein, and R. Giryes. Autoencoders. 2020, Arxiv.
Vrachimis, S.G., Kyriakou, M.S., Eliades, D.G., and Polycarpou, M.M. LeakDB: a benchmark dataset for leakage diagnosis in water distribution networks. 2018. Proceeding of the WDSA /CCWI Joint Conference (Vol. 1).
Chan, Chin, Zhong (bib0020) 2018; 6
.
Dijkstra, Edsger (bib0031) 1959
(bib0012) 2022; 34
Galdiero, Paola, Fontana, Giugni, Savic (bib0014) 2016
Yarlagadda, G¨uera, Bestagini, Zhu, Tubaro, Delp (bib0026) 2018
Perez, Sanz, Puig, Quevedo, Cuguero Escofet, Nejjari, Meseguer, Cembrano, Mirats Tur, Sarrate (bib0006) 2014
(bib0017) 2023; 122
Loureiro, Amado, Martins, Vitorino, Mamade, Coelho (bib0013) 2016
Bestagini, Lombardi, Lualdi, Picetti, Tubaro (bib0025) 2021
Mounce (10.1016/j.dsp.2025.105603_bib0001) 2010
Galdiero (10.1016/j.dsp.2025.105603_bib0014) 2016
Punukollu (10.1016/j.dsp.2025.105603_bib0018) 2022
Perez (10.1016/j.dsp.2025.105603_bib0006) 2014
10.1016/j.dsp.2025.105603_bib0019
Romano (10.1016/j.dsp.2025.105603_bib0011) 2014
Bestagini (10.1016/j.dsp.2025.105603_bib0025) 2021
Ugo Leonzio (10.1016/j.dsp.2025.105603_bib0016) 2023
10.1016/j.dsp.2025.105603_bib0022
Dijkstra (10.1016/j.dsp.2025.105603_bib0031) 1959
Guo (10.1016/j.dsp.2025.105603_bib0003) 2021
Sarkamaryan (10.1016/j.dsp.2025.105603_bib0002) 2018
Irofti (10.1016/j.dsp.2025.105603_bib0009) 2020
Loureiro (10.1016/j.dsp.2025.105603_bib0013) 2016
(10.1016/j.dsp.2025.105603_bib0012) 2022; 34
Karney (10.1016/j.dsp.2025.105603_bib0004) 2002
Mashhadi (10.1016/j.dsp.2025.105603_bib0008) 2021
10.1016/j.dsp.2025.105603_bib0024
Yarlagadda (10.1016/j.dsp.2025.105603_bib0026) 2018
10.1016/j.dsp.2025.105603_bib0023
Adachi (10.1016/j.dsp.2025.105603_bib0007) 2014
(10.1016/j.dsp.2025.105603_bib0017) 2023; 122
10.1016/j.dsp.2025.105603_bib0028
10.1016/j.dsp.2025.105603_bib0027
10.1016/j.dsp.2025.105603_bib0029
Chan (10.1016/j.dsp.2025.105603_bib0010) 2018
Mashford (10.1016/j.dsp.2025.105603_bib0005) 2012
Chan (10.1016/j.dsp.2025.105603_bib0020) 2018; 6
Wu (10.1016/j.dsp.2025.105603_bib0021) 2017; 14
Kyriakou (10.1016/j.dsp.2025.105603_bib0030) 2023
(10.1016/j.dsp.2025.105603_bib0015) 2024; 145
References_xml – reference: Kyriakou, M.S., Demetriades, M., Vrachimis, S.G., Eliades, D.G., .& Polycarpou, M.M.
– year: 2023
  ident: bib0030
  article-title: EPyT: an EPANET-python toolkit for smart water network simulations
  publication-title: J. Open. Source Softw.
– year: 2023
  ident: bib0016
  article-title: Water leak detection and localization using convolutional autoencoders
  publication-title: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing
– start-page: 182
  year: 2021
  end-page: 195
  ident: bib0025
  article-title: Landmine detection using autoencoders on multipolarization GPR volumetric data
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– reference: Rossman, L. “Epanet 2.0 user manual. 2000.
– start-page: 1
  year: 2022
  end-page: 9
  ident: bib0018
  article-title: Leak detection in water distribution networks using deep learning
  publication-title: ISH J. Hydraul. Eng.
– year: 2014
  ident: bib0007
  article-title: Estimating area leakage in water networks based on hydraulic model and asset information
  publication-title: Water Distribution System Analysis Conference
– start-page: 78846
  year: 2018
  end-page: 78867
  ident: bib0010
  article-title: Review of current technologies and proposed intelligent methodologies for water distributed network leakage detection
  publication-title: IEEe Access.
– start-page: 309
  year: 2010
  end-page: 318
  ident: bib0001
  article-title: Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows
  publication-title: ASCE J. Water Resour. Plan. Manag.
– start-page: 1293
  year: 2021
  end-page: 1315
  ident: bib0008
  article-title: Use of machine learning for leak detection and localization in water distribution systems
  publication-title: Smart Cities
– start-page: 269
  year: 1959
  end-page: 271
  ident: bib0031
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math. (Heidelb)
– start-page: 457
  year: 2014
  end-page: 467
  ident: bib0011
  article-title: Automated detection of pipe bursts and other events in water distribution systems
  publication-title: ASCE J. Water Resour. Plan. Manag.
– reference: NTNU, Martin Bjerke. Leak detection in water distribution networks using gated recurrent neural networks. 2019.
– start-page: 1
  year: 2021
  end-page: 11
  ident: bib0003
  article-title: Leakage detection in water distribution systems based on time–Frequency convolutional neural network
  publication-title: ASCE J. Water Resour. Plan.
– reference: Vrachimis, S.G., Kyriakou, M.S., Eliades, D.G., and Polycarpou, M.M. LeakDB: a benchmark dataset for leakage diagnosis in water distribution networks. 2018. Proceeding of the WDSA /CCWI Joint Conference (Vol. 1).
– year: 2018
  ident: bib0026
  article-title: Satellite image forgery detection and localization using GAN and one-class classifi er
  publication-title: IS&T Electron. Imaging
– start-page: 24
  year: 2014
  end-page: 36
  ident: bib0006
  article-title: Leak localization in water networks: a model based methodology using pressure sensors applied to a real network in Barcelona
  publication-title: IEEE Control Syst. Mag.
– start-page: 242
  year: 2016
  end-page: 252
  ident: bib0013
  article-title: Water distribution systems flow monitoring and anomalous event detection: a practical approach
  publication-title: Urban Water J.
– volume: 34
  start-page: 4759
  year: 2022
  end-page: 4779
  ident: bib0012
  article-title: Leak detection and localization in water distribution networks by combining expert knowledge and data-driven models
  publication-title: Leak detection and localization in water distribution networks by combining expert knowledge and data-driven models
– start-page: 429
  year: 2012
  end-page: 444
  ident: bib0005
  article-title: Leak detection in simulated water pipe networks using svm
  publication-title: Appl. Artif. Intell.
– volume: 122
  year: 2023
  ident: bib0017
  article-title: Leakage detection in water distribution networks via 1D CNN deep autoencoder for multivariate SCADA data
  publication-title: Leakage detection in water distribution networks via 1D CNN deep autoencoder for multivariate SCADA data
– start-page: 404
  year: 2018
  end-page: 413
  ident: bib0002
  article-title: Leakage detection and calibration of pipe networks by the inverse transient analysis modified by gaussian functions for leakage simulation
  publication-title: J. Water Supply: Res. Technol.-Aqua
– volume: 6
  start-page: 78846
  year: 2018
  end-page: 78867
  ident: bib0020
  article-title: Review of current technologies and proposed intelligent methodologies for water distributed network leakage detection
  publication-title: IEEe Access.
– reference: .
– volume: 145
  year: 2024
  ident: bib0015
  article-title: A method based on VMD improved by SSA for leak location of water distribution
  publication-title: A method based on VMD improved by SSA for leak location of water distribution
– start-page: 49
  year: 2016
  end-page: 61
  ident: bib0014
  article-title: Decision support system for the optimal design of district metered areas
  publication-title: J. Hydroinformat.
– volume: 14
  start-page: 972
  year: 2017
  end-page: 983
  ident: bib0021
  article-title: A review of data-driven approaches for burst detection in water
  publication-title: Urban Water J.
– reference: D. Bank, N. Koenigstein, and R. Giryes. Autoencoders. 2020, Arxiv.
– start-page: 46
  year: 2020
  end-page: 57
  ident: bib0009
  article-title: Fault handling in large water networks with online dictionary learning
  publication-title: J. Process. Control
– start-page: 441
  year: 2002
  end-page: 450
  ident: bib0004
  article-title: Energy and costs of leaky pipes: toward comprehensive picture
  publication-title: ASCE J. Water Resour. Plan. Manag.
– start-page: 78846
  year: 2018
  ident: 10.1016/j.dsp.2025.105603_bib0010
  article-title: Review of current technologies and proposed intelligent methodologies for water distributed network leakage detection
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2018.2885444
– start-page: 269
  year: 1959
  ident: 10.1016/j.dsp.2025.105603_bib0031
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math. (Heidelb)
  doi: 10.1007/BF01386390
– year: 2014
  ident: 10.1016/j.dsp.2025.105603_bib0007
  article-title: Estimating area leakage in water networks based on hydraulic model and asset information
– ident: 10.1016/j.dsp.2025.105603_bib0023
– volume: 14
  start-page: 972
  issue: 9
  year: 2017
  ident: 10.1016/j.dsp.2025.105603_bib0021
  article-title: A review of data-driven approaches for burst detection in water
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2017.1279191
– start-page: 49
  year: 2016
  ident: 10.1016/j.dsp.2025.105603_bib0014
  article-title: Decision support system for the optimal design of district metered areas
  publication-title: J. Hydroinformat.
  doi: 10.2166/hydro.2015.023
– start-page: 1
  year: 2022
  ident: 10.1016/j.dsp.2025.105603_bib0018
  article-title: Leak detection in water distribution networks using deep learning
  publication-title: ISH J. Hydraul. Eng.
– start-page: 429
  year: 2012
  ident: 10.1016/j.dsp.2025.105603_bib0005
  article-title: Leak detection in simulated water pipe networks using svm
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2012.670974
– ident: 10.1016/j.dsp.2025.105603_bib0027
– start-page: 457
  year: 2014
  ident: 10.1016/j.dsp.2025.105603_bib0011
  article-title: Automated detection of pipe bursts and other events in water distribution systems
  publication-title: ASCE J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000339
– volume: 122
  year: 2023
  ident: 10.1016/j.dsp.2025.105603_bib0017
  article-title: Leakage detection in water distribution networks via 1D CNN deep autoencoder for multivariate SCADA data
  publication-title: Eng. Appl. Artif. Intell.
– volume: 6
  start-page: 78846
  year: 2018
  ident: 10.1016/j.dsp.2025.105603_bib0020
  article-title: Review of current technologies and proposed intelligent methodologies for water distributed network leakage detection
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2018.2885444
– start-page: 182
  year: 2021
  ident: 10.1016/j.dsp.2025.105603_bib0025
  article-title: Landmine detection using autoencoders on multipolarization GPR volumetric data
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2020.2984951
– ident: 10.1016/j.dsp.2025.105603_bib0019
– start-page: 441
  year: 2002
  ident: 10.1016/j.dsp.2025.105603_bib0004
  article-title: Energy and costs of leaky pipes: toward comprehensive picture
  publication-title: ASCE J. Water Resour. Plan. Manag.
– start-page: 24
  year: 2014
  ident: 10.1016/j.dsp.2025.105603_bib0006
  article-title: Leak localization in water networks: a model based methodology using pressure sensors applied to a real network in Barcelona
  publication-title: IEEE Control Syst. Mag.
– start-page: 1
  year: 2021
  ident: 10.1016/j.dsp.2025.105603_bib0003
  article-title: Leakage detection in water distribution systems based on time–Frequency convolutional neural network
  publication-title: ASCE J. Water Resour. Plan.
– year: 2023
  ident: 10.1016/j.dsp.2025.105603_bib0016
  article-title: Water leak detection and localization using convolutional autoencoders
– ident: 10.1016/j.dsp.2025.105603_bib0024
– ident: 10.1016/j.dsp.2025.105603_bib0022
– year: 2018
  ident: 10.1016/j.dsp.2025.105603_bib0026
  article-title: Satellite image forgery detection and localization using GAN and one-class classifi er
  publication-title: IS&T Electron. Imaging
  doi: 10.2352/ISSN.2470-1173.2018.07.MWSF-214
– ident: 10.1016/j.dsp.2025.105603_bib0028
– ident: 10.1016/j.dsp.2025.105603_bib0029
– volume: 145
  year: 2024
  ident: 10.1016/j.dsp.2025.105603_bib0015
  article-title: A method based on VMD improved by SSA for leak location of water distribution
  publication-title: Digit. Signal. Process.
– start-page: 242
  year: 2016
  ident: 10.1016/j.dsp.2025.105603_bib0013
  article-title: Water distribution systems flow monitoring and anomalous event detection: a practical approach
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2014.988733
– start-page: 1293
  year: 2021
  ident: 10.1016/j.dsp.2025.105603_bib0008
  article-title: Use of machine learning for leak detection and localization in water distribution systems
  publication-title: Smart Cities
  doi: 10.3390/smartcities4040069
– start-page: 46
  year: 2020
  ident: 10.1016/j.dsp.2025.105603_bib0009
  article-title: Fault handling in large water networks with online dictionary learning
  publication-title: J. Process. Control
  doi: 10.1016/j.jprocont.2020.08.003
– start-page: 309
  year: 2010
  ident: 10.1016/j.dsp.2025.105603_bib0001
  article-title: Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows
  publication-title: ASCE J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000030
– start-page: 404
  year: 2018
  ident: 10.1016/j.dsp.2025.105603_bib0002
  article-title: Leakage detection and calibration of pipe networks by the inverse transient analysis modified by gaussian functions for leakage simulation
  publication-title: J. Water Supply: Res. Technol.-Aqua
  doi: 10.2166/aqua.2018.176
– volume: 34
  start-page: 4759
  year: 2022
  ident: 10.1016/j.dsp.2025.105603_bib0012
  article-title: Leak detection and localization in water distribution networks by combining expert knowledge and data-driven models
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06666-4
– year: 2023
  ident: 10.1016/j.dsp.2025.105603_bib0030
  article-title: EPyT: an EPANET-python toolkit for smart water network simulations
  publication-title: J. Open. Source Softw.
  doi: 10.21105/joss.05947
SSID ssj0007426
Score 2.4147308
Snippet In Italy an average of 40% of the water in transit in Water Distribution Networks (WDNs) is lost, which represents a significant economic loss, and, because of...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105603
SubjectTerms CNN Overcomplete Autoencoder inference errors analysis
Convolutional neural network (CNN) Overcomplete Autoencoder application
Leak identification in Water Distribution Networks (WDN)
Machine learning methods for water leak detection and localization
Water pressure data features engineering
Title Moving forward in water distribution network leak identification through an innovative features engineering step
URI https://dx.doi.org/10.1016/j.dsp.2025.105603
Volume 168
WOSCitedRecordID wos001582446700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1051-2004
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007426
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF7cpIfmEJI-aNok7KGnChVrtSutjiZx3g2FusU3sZJWxYlRjO26_vmZ2V3JittAWigYYWQk2fMN8_I3M4R86CrwcZpzPy44JChlIHwlwRiC6hRxFBWcm16Y71fx9bUcDpMvnc5l3QuzGMdVJZfLZPJfoYZzADa2zv4F3M1N4QS8B9DhCLDD8UnAf7Y1AghGkRCL9YxfyuwBxxG5bruVV1n2Ny6NuPVGhaMMWWWoV_coJEHanak4GlybEaAzT68mGHqgIpN2eHs8-oFLSDxkhWCLl-1CqL2jKYiDHCyDoD9eWA6YbROCHzaD3Nx8dGoqLdPxXbsmwdZrEk2zzAMuJ0RygUWqbXztUp3fDLmtKdx8KmY4VJQJ3EccdcOV12q4hF_xvswYH2wIFdEzsslikYCJ2-yd94cXjWOOudm-13yP-k9uQ_dbe9Cfw5RW6DHYIdsuZ6A9i_Uu6ejqJdlqTZJ8RSYWdepQp6OKGtRpG3XqUKeIOn2IOnWoU1XRFeq0Rp22UKeI-mvy7aQ_ODrz3TINP2cJn_uaRTIKCyWyUpSQx0JeX6oyjLMwyYTs6ohrleQ67gYqlwHIsZTgfxJZBEkOMT4P35CN6q7SbwnNpYAXBIeZZDwLhVIc4lIFyTYLQ5aJPfKxll06sTNT0ppMeJOCoFMUdGoFvUd4Ld3UBX02mEtBFR6_7N2_XfaevFjp6z7ZmE9_6gPyPF_MR7PpoVOYe9LIf-I
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moving+forward+in+water+distribution+network+leak+identification+through+an+innovative+features+engineering+step&rft.jtitle=Digital+signal+processing&rft.au=Damonti%2C+Elvio&rft.au=Bernasconi%2C+Giancarlo&rft.date=2026-01-01&rft.pub=Elsevier+Inc&rft.issn=1051-2004&rft.volume=168&rft_id=info:doi/10.1016%2Fj.dsp.2025.105603&rft.externalDocID=S1051200425006256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon