Location and Bid Privacy Preserving-Based Quality-Aware Worker Recruitment Scheme in MCS
Mobile crowd sensing (MCS) has become a prevalent large-scale and low-cost data collection paradigm by employing workers, and the location and bid privacy of both task and workers should not be leaked to the third party to prevent the adversary from attacking. Existing privacy preserving worker recr...
Uložené v:
| Vydané v: | IEEE internet of things journal Ročník 11; číslo 12; s. 21841 - 21856 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
15.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2327-4662, 2327-4662 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Mobile crowd sensing (MCS) has become a prevalent large-scale and low-cost data collection paradigm by employing workers, and the location and bid privacy of both task and workers should not be leaked to the third party to prevent the adversary from attacking. Existing privacy preserving worker recruitment schemes have taken the location and quality into consideration, but ignore the bid privacy. To tackle this issue, a two-stage location and bid privacy preserving-based quality-aware worker recruitment (LBPP-QWR) scheme is proposed in this article. In the first stage, to select those workers who satisfy the specified location and bid range of the task in the encrypted state, we propose a hybrid encryption scheme of matrix encryption and asymmetric encryption technique in the MCS platform. For the second stage, after obtaining the preliminary worker set via the platform, we propose a knapsack worker selection (KWS) algorithm to recruit those high-quality and low-bid workers under the budget constraint in the data requester (DR). Considering that there are quality-unknown workers, we further propose an improved <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-KWS algorithm based on <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-greedy algorithm by combining the exploration and exploitation mechanism to learn the quality of worker. Extensive experiments conducted on real-world data sets demonstrate that our proposed scheme can improve the average total quality by 17.96%-83.34%, and the cost efficiency by 27.99%-67.90% for the DR compared with other benchmark methods. |
|---|---|
| AbstractList | Mobile crowd sensing (MCS) has become a prevalent large-scale and low-cost data collection paradigm by employing workers, and the location and bid privacy of both task and workers should not be leaked to the third party to prevent the adversary from attacking. Existing privacy preserving worker recruitment schemes have taken the location and quality into consideration, but ignore the bid privacy. To tackle this issue, a two-stage location and bid privacy preserving-based quality-aware worker recruitment (LBPP-QWR) scheme is proposed in this article. In the first stage, to select those workers who satisfy the specified location and bid range of the task in the encrypted state, we propose a hybrid encryption scheme of matrix encryption and asymmetric encryption technique in the MCS platform. For the second stage, after obtaining the preliminary worker set via the platform, we propose a knapsack worker selection (KWS) algorithm to recruit those high-quality and low-bid workers under the budget constraint in the data requester (DR). Considering that there are quality-unknown workers, we further propose an improved [Formula Omitted]-KWS algorithm based on [Formula Omitted]-greedy algorithm by combining the exploration and exploitation mechanism to learn the quality of worker. Extensive experiments conducted on real-world data sets demonstrate that our proposed scheme can improve the average total quality by 17.96%–83.34%, and the cost efficiency by 27.99%–67.90% for the DR compared with other benchmark methods. Mobile crowd sensing (MCS) has become a prevalent large-scale and low-cost data collection paradigm by employing workers, and the location and bid privacy of both task and workers should not be leaked to the third party to prevent the adversary from attacking. Existing privacy preserving worker recruitment schemes have taken the location and quality into consideration, but ignore the bid privacy. To tackle this issue, a two-stage location and bid privacy preserving-based quality-aware worker recruitment (LBPP-QWR) scheme is proposed in this article. In the first stage, to select those workers who satisfy the specified location and bid range of the task in the encrypted state, we propose a hybrid encryption scheme of matrix encryption and asymmetric encryption technique in the MCS platform. For the second stage, after obtaining the preliminary worker set via the platform, we propose a knapsack worker selection (KWS) algorithm to recruit those high-quality and low-bid workers under the budget constraint in the data requester (DR). Considering that there are quality-unknown workers, we further propose an improved <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-KWS algorithm based on <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-greedy algorithm by combining the exploration and exploitation mechanism to learn the quality of worker. Extensive experiments conducted on real-world data sets demonstrate that our proposed scheme can improve the average total quality by 17.96%-83.34%, and the cost efficiency by 27.99%-67.90% for the DR compared with other benchmark methods. |
| Author | Pang, Xiaoyi Long, Saiqin Liu, Haolin Li, Zhetao Deng, Qingyong Shi, Weifan |
| Author_xml | – sequence: 1 givenname: Weifan orcidid: 0009-0009-6869-6001 surname: Shi fullname: Shi, Weifan email: swfan@stu.gxnu.edu.cn organization: Key Laboratory of Education Blockchain and Intelligent Technology, Ministry of Education, and the Guangxi Key Laboratory of Multisource Information Mining and Security, Guangxi Normal University, Guilin, China – sequence: 2 givenname: Qingyong orcidid: 0000-0001-9434-3968 surname: Deng fullname: Deng, Qingyong email: qydeng@gxnu.edu.cn organization: Key Laboratory of Education Blockchain and Intelligent Technology, Ministry of Education, and the Guangxi Key Laboratory of Multisource Information Mining and Security, Guangxi Normal University, Guilin, China – sequence: 3 givenname: Zhetao orcidid: 0000-0002-7804-0286 surname: Li fullname: Li, Zhetao email: liztchina@hotmail.com organization: College of Information Science and Technology, Jinan University, Guangzhou, China – sequence: 4 givenname: Saiqin orcidid: 0000-0001-7119-8673 surname: Long fullname: Long, Saiqin email: xxgcxyxtu@sina.com organization: College of Information Science and Technology, Jinan University, Guangzhou, China – sequence: 5 givenname: Haolin orcidid: 0000-0003-3192-6378 surname: Liu fullname: Liu, Haolin email: liu.haolin@foxmail.com organization: School of Computer Science, Xiangtan University, Xiangtan, Hunan, China – sequence: 6 givenname: Xiaoyi orcidid: 0000-0002-2763-2695 surname: Pang fullname: Pang, Xiaoyi email: xypang@whu.edu.cn organization: School of Cyber Science and Technology, Zhejiang University, Hangzhou, China |
| BookMark | eNp9kE1PwkAQhjcGExH5ASYeNvFc3I92t3sE4gcGgwpGb812O9VFaHG3xfDvLcKBePD0zuF9ZjLPKWoVZQEInVPSo5Soq_vRZNZjhIU9zqWQSh2hNuNMBqEQrHUwn6Cu93NCSINFVIk2ehuXRle2LLAuMjywGX50dq3Npknw4Na2eA8G2kOGn2q9sNUm6H9rB_i1dJ_g8DMYV9tqCUWFp-YDloBtgR-G0zN0nOuFh-4-O-jl5no2vAvGk9vRsD8ODFNhFWS5yeKMKSklDTMtJE-jmMYMTCRoamgU5zkLKTM05RFlXKQx0QzCTCgjQ1C8gy53e1eu_KrBV8m8rF3RnEw4EVHzNeGsacldy7jSewd5Ymz1-3fltF0klCRbk8nWZLI1mexNNiT9Q66cXWq3-Ze52DEWAA76oWSccv4DaLp_kA |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_1109_TMC_2025_3564404 crossref_primary_10_1109_TNSE_2025_3559563 crossref_primary_10_1016_j_adhoc_2025_103839 crossref_primary_10_1016_j_iot_2025_101689 crossref_primary_10_1038_s41598_025_02530_w crossref_primary_10_1109_TSC_2025_3565374 |
| Cites_doi | 10.1109/ACCESS.2023.3342158 10.1145/1644038.1644048 10.1016/j.comnet.2023.109600 10.1007/s11280-022-01047-w 10.1109/TDSC.2022.3145649 10.1109/TIFS.2020.2975925 10.1109/TVT.2022.3170505 10.1016/j.future.2023.03.022 10.1109/TVT.2021.3117696 10.1016/j.future.2019.04.043 10.1109/TMC.2020.3040138 10.1109/jiot.2023.3318597 10.1109/JIOT.2022.3233052 10.1109/JIOT.2023.3325274 10.1016/j.cose.2023.103516 10.1109/TSC.2022.3172136 10.1145/2668332.2668346 10.1109/TII.2021.3109437 10.1109/TCE.2023.3264217 10.1145/3431502 10.1109/TMC.2021.3133365 10.1016/j.eswa.2023.122132 10.1016/j.ins.2023.119444 10.1016/j.jnca.2023.103634 10.1109/TMC.2021.3064324 10.1109/TDSC.2022.3186023 10.1109/TKDE.2020.2992531 10.1109/TMC.2019.2908638 10.1109/JIOT.2023.3292920 10.1109/TSMC.2023.3298513 10.1109/TCSS.2019.2907059 10.1109/TMC.2021.3136236 10.1109/TNSM.2022.3217689 10.1109/jiot.2023.3298814 10.1109/JIOT.2021.3113997 10.1016/j.knosys.2023.110330 10.1109/tiv.2023.3321300 10.1016/j.future.2022.09.022 10.1109/TIFS.2022.3207905 10.1109/TMC.2021.3112394 10.1109/TSC.2023.3292498 10.1109/TMC.2021.3059346 10.1145/1460412.1460444 10.1109/tnn.1998.712192 10.1109/jiot.2023.3308072 10.1109/TIFS.2016.2570740 10.1109/jiot.2023.3348837 10.1016/j.future.2023.09.027 10.1109/TKDE.2021.3054409 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2024.3376799 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 21856 |
| ExternalDocumentID | 10_1109_JIOT_2024_3376799 10472313 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Research Fund of Guangxi Key Laboratory of Multisource Information Mining and Security grantid: 22-A-02-01 – fundername: National Natural Science Foundation of China grantid: 62076214; 62032020; U23B2027; 62172350; 62372396 funderid: 10.13039/501100001809 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2024A1515010214 funderid: 10.13039/501100021171 – fundername: Project of Guangxi Science and Technology, China grantid: 2023GXNSFDA026003 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-dfcd8d2977714da673b58182ec561bc158ff2412c1b351236b80a2e4d69c74e93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001242362600077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Mon Jun 30 05:03:08 EDT 2025 Sat Nov 29 01:44:02 EST 2025 Tue Nov 18 21:25:26 EST 2025 Wed Aug 27 02:06:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-dfcd8d2977714da673b58182ec561bc158ff2412c1b351236b80a2e4d69c74e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2763-2695 0000-0003-3192-6378 0009-0009-6869-6001 0000-0001-9434-3968 0000-0001-7119-8673 0000-0002-7804-0286 |
| PQID | 3065466032 |
| PQPubID | 2040421 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_JIOT_2024_3376799 crossref_primary_10_1109_JIOT_2024_3376799 ieee_primary_10472313 proquest_journals_3065466032 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-15 |
| PublicationDateYYYYMMDD | 2024-06-15 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 Bracciale (ref49) 2014 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref14 doi: 10.1109/ACCESS.2023.3342158 – ident: ref12 doi: 10.1145/1644038.1644048 – ident: ref18 doi: 10.1016/j.comnet.2023.109600 – ident: ref41 doi: 10.1007/s11280-022-01047-w – ident: ref44 doi: 10.1109/TDSC.2022.3145649 – ident: ref20 doi: 10.1109/TIFS.2020.2975925 – ident: ref26 doi: 10.1109/TVT.2022.3170505 – ident: ref21 doi: 10.1016/j.future.2023.03.022 – ident: ref30 doi: 10.1109/TVT.2021.3117696 – ident: ref42 doi: 10.1016/j.future.2019.04.043 – ident: ref37 doi: 10.1109/TMC.2020.3040138 – ident: ref29 doi: 10.1109/jiot.2023.3318597 – ident: ref15 doi: 10.1109/JIOT.2022.3233052 – volume-title: CRAWDAD dataset roma/taxi (v. 2014-07-17) year: 2014 ident: ref49 – ident: ref8 doi: 10.1109/JIOT.2023.3325274 – ident: ref11 doi: 10.1016/j.cose.2023.103516 – ident: ref4 doi: 10.1109/TSC.2022.3172136 – ident: ref10 doi: 10.1145/2668332.2668346 – ident: ref17 doi: 10.1109/TII.2021.3109437 – ident: ref7 doi: 10.1109/TCE.2023.3264217 – ident: ref47 doi: 10.1145/3431502 – ident: ref38 doi: 10.1109/TMC.2021.3133365 – ident: ref1 doi: 10.1016/j.eswa.2023.122132 – ident: ref45 doi: 10.1016/j.ins.2023.119444 – ident: ref5 doi: 10.1016/j.jnca.2023.103634 – ident: ref33 doi: 10.1109/TMC.2021.3064324 – ident: ref19 doi: 10.1109/TDSC.2022.3186023 – ident: ref31 doi: 10.1109/TKDE.2020.2992531 – ident: ref22 doi: 10.1109/TMC.2019.2908638 – ident: ref24 doi: 10.1109/JIOT.2023.3292920 – ident: ref35 doi: 10.1109/TSMC.2023.3298513 – ident: ref25 doi: 10.1109/TCSS.2019.2907059 – ident: ref43 doi: 10.1109/TMC.2021.3136236 – ident: ref3 doi: 10.1109/TNSM.2022.3217689 – ident: ref48 doi: 10.1109/jiot.2023.3298814 – ident: ref27 doi: 10.1109/JIOT.2021.3113997 – ident: ref23 doi: 10.1016/j.knosys.2023.110330 – ident: ref34 doi: 10.1109/tiv.2023.3321300 – ident: ref46 doi: 10.1016/j.future.2022.09.022 – ident: ref40 doi: 10.1109/TIFS.2022.3207905 – ident: ref16 doi: 10.1109/TMC.2021.3112394 – ident: ref2 doi: 10.1109/TSC.2023.3292498 – ident: ref32 doi: 10.1109/TMC.2021.3059346 – ident: ref13 doi: 10.1145/1460412.1460444 – ident: ref50 doi: 10.1109/tnn.1998.712192 – ident: ref9 doi: 10.1109/jiot.2023.3308072 – ident: ref6 doi: 10.1109/TIFS.2016.2570740 – ident: ref28 doi: 10.1109/jiot.2023.3348837 – ident: ref36 doi: 10.1016/j.future.2023.09.027 – ident: ref39 doi: 10.1109/TKDE.2021.3054409 |
| SSID | ssj0001105196 |
| Score | 2.3418288 |
| Snippet | Mobile crowd sensing (MCS) has become a prevalent large-scale and low-cost data collection paradigm by employing workers, and the location and bid privacy of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 21841 |
| SubjectTerms | Algorithms Cryptography Data collection Data privacy Encryption Greedy algorithms Location and bid privacy mobile crowd sensing (MCS) Privacy privacy preserving quality aware Recruitment Sensors Task analysis worker recruitment Workers |
| Title | Location and Bid Privacy Preserving-Based Quality-Aware Worker Recruitment Scheme in MCS |
| URI | https://ieeexplore.ieee.org/document/10472313 https://www.proquest.com/docview/3065466032 |
| Volume | 11 |
| WOSCitedRecordID | wos001242362600077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9u-OCL82PidEoefBKytelH0sdtOFTmHDhlb6VNUi1oJ92H7L83l3ZOEAXf-pAcJZfc_XK5-x1CF56MpWBUETthjLiJigl3JCXgC3isAQM1XHpPAzYc8skkGJXF6qYWRillks9UCz7NW76cigWEytpAK6DxiFNBFcb8olhrE1CxAY345culbQXt25v7sb4BUrflAGeJoXfd-B7TTOWHBTZupV_75w_tod0SP-JOofB9tKWyA1Rb92bA5VE9RJPBtAjG4SiTuJtKPMrTZSRWGJIuwEBkz6SrXZjEBY3GinQ-olxhiJ5rQQAnF6lJQddCX9SbwmmG73oPdfTYvxr3rknZRYEIGrhzIhMhuaQa5zHblZHPnNjTXpoqoaFTLGyPJ4l241TYseMBF0vMrYgqV_qBYK4KnCNUzaaZOkaYRxotcQNiuKuhQCS0uFhbAI3TBPdFA1nr9Q1FSTEOnS5eQ3PVsIIQVBKCSsJSJQ10-TXlveDX-GtwHXTwbWCx_A3UXGsxLI_gLHRMo3ffcujJL9NO0Q5Ih8Qv22ui6jxfqDO0LZbzdJafm931CR3Ey7g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SXBhPMV45sAJKdCmr_S4TaABY0xioN2qNkmhEnRobCD-PXGaARICiVsPiVvFjf3FsT8DHAYykyJiirp5FFE_VxnlnmQUfQHPNGBghkvvrhN1u3wwiHu2WN3UwiilTPKZOsZHc5cvh2KCobITpBXQeMSbhXlsnWXLtb5CKi7ikdDeXbpOfHJxft3XZ0DmH3vIWmIIXr-8j2mn8sMGG8dyVvvnJ63AskWQpFGpfBVmVLkGtWl3BmI36zoMOsMqHEfSUpJmIUlvVLym4p1g2gWaiPKeNrUTk6Qi0ninjbd0pAjGz7UgBJSTwiSha6EP6kmRoiRXrZsNuD077bfa1PZRoILF_pjKXEgumUZ6kevLNIy8LNB-mimhwVMm3IDnuXbkTLiZFyAbS8adlClfhrGIfBV7mzBXDku1BYSnGi9xA2O4r8FAKrS4TNsAjdQED0UdnOn6JsKSjGOvi8fEHDacOEGVJKiSxKqkDkefU54rho2_Bm-gDr4NrJa_DrtTLSZ2E74knmn1Hjoe2_5l2gEstvtXnaRz3r3cgSV8E6aBucEuzI1HE7UHC-J1XLyM9s2f9gHl8c8B |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Location+and+Bid+Privacy+Preserving-Based+Quality-Aware+Worker+Recruitment+Scheme+in+MCS&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Shi%2C+Weifan&rft.au=Deng%2C+Qingyong&rft.au=Li%2C+Zhetao&rft.au=Long%2C+Saiqin&rft.date=2024-06-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=11&rft.issue=12&rft.spage=21841&rft_id=info:doi/10.1109%2FJIOT.2024.3376799&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |