Location and Bid Privacy Preserving-Based Quality-Aware Worker Recruitment Scheme in MCS

Mobile crowd sensing (MCS) has become a prevalent large-scale and low-cost data collection paradigm by employing workers, and the location and bid privacy of both task and workers should not be leaked to the third party to prevent the adversary from attacking. Existing privacy preserving worker recr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE internet of things journal Ročník 11; číslo 12; s. 21841 - 21856
Hlavní autori: Shi, Weifan, Deng, Qingyong, Li, Zhetao, Long, Saiqin, Liu, Haolin, Pang, Xiaoyi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 15.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2327-4662, 2327-4662
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Mobile crowd sensing (MCS) has become a prevalent large-scale and low-cost data collection paradigm by employing workers, and the location and bid privacy of both task and workers should not be leaked to the third party to prevent the adversary from attacking. Existing privacy preserving worker recruitment schemes have taken the location and quality into consideration, but ignore the bid privacy. To tackle this issue, a two-stage location and bid privacy preserving-based quality-aware worker recruitment (LBPP-QWR) scheme is proposed in this article. In the first stage, to select those workers who satisfy the specified location and bid range of the task in the encrypted state, we propose a hybrid encryption scheme of matrix encryption and asymmetric encryption technique in the MCS platform. For the second stage, after obtaining the preliminary worker set via the platform, we propose a knapsack worker selection (KWS) algorithm to recruit those high-quality and low-bid workers under the budget constraint in the data requester (DR). Considering that there are quality-unknown workers, we further propose an improved <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-KWS algorithm based on <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-greedy algorithm by combining the exploration and exploitation mechanism to learn the quality of worker. Extensive experiments conducted on real-world data sets demonstrate that our proposed scheme can improve the average total quality by 17.96%-83.34%, and the cost efficiency by 27.99%-67.90% for the DR compared with other benchmark methods.
AbstractList Mobile crowd sensing (MCS) has become a prevalent large-scale and low-cost data collection paradigm by employing workers, and the location and bid privacy of both task and workers should not be leaked to the third party to prevent the adversary from attacking. Existing privacy preserving worker recruitment schemes have taken the location and quality into consideration, but ignore the bid privacy. To tackle this issue, a two-stage location and bid privacy preserving-based quality-aware worker recruitment (LBPP-QWR) scheme is proposed in this article. In the first stage, to select those workers who satisfy the specified location and bid range of the task in the encrypted state, we propose a hybrid encryption scheme of matrix encryption and asymmetric encryption technique in the MCS platform. For the second stage, after obtaining the preliminary worker set via the platform, we propose a knapsack worker selection (KWS) algorithm to recruit those high-quality and low-bid workers under the budget constraint in the data requester (DR). Considering that there are quality-unknown workers, we further propose an improved [Formula Omitted]-KWS algorithm based on [Formula Omitted]-greedy algorithm by combining the exploration and exploitation mechanism to learn the quality of worker. Extensive experiments conducted on real-world data sets demonstrate that our proposed scheme can improve the average total quality by 17.96%–83.34%, and the cost efficiency by 27.99%–67.90% for the DR compared with other benchmark methods.
Mobile crowd sensing (MCS) has become a prevalent large-scale and low-cost data collection paradigm by employing workers, and the location and bid privacy of both task and workers should not be leaked to the third party to prevent the adversary from attacking. Existing privacy preserving worker recruitment schemes have taken the location and quality into consideration, but ignore the bid privacy. To tackle this issue, a two-stage location and bid privacy preserving-based quality-aware worker recruitment (LBPP-QWR) scheme is proposed in this article. In the first stage, to select those workers who satisfy the specified location and bid range of the task in the encrypted state, we propose a hybrid encryption scheme of matrix encryption and asymmetric encryption technique in the MCS platform. For the second stage, after obtaining the preliminary worker set via the platform, we propose a knapsack worker selection (KWS) algorithm to recruit those high-quality and low-bid workers under the budget constraint in the data requester (DR). Considering that there are quality-unknown workers, we further propose an improved <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-KWS algorithm based on <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-greedy algorithm by combining the exploration and exploitation mechanism to learn the quality of worker. Extensive experiments conducted on real-world data sets demonstrate that our proposed scheme can improve the average total quality by 17.96%-83.34%, and the cost efficiency by 27.99%-67.90% for the DR compared with other benchmark methods.
Author Pang, Xiaoyi
Long, Saiqin
Liu, Haolin
Li, Zhetao
Deng, Qingyong
Shi, Weifan
Author_xml – sequence: 1
  givenname: Weifan
  orcidid: 0009-0009-6869-6001
  surname: Shi
  fullname: Shi, Weifan
  email: swfan@stu.gxnu.edu.cn
  organization: Key Laboratory of Education Blockchain and Intelligent Technology, Ministry of Education, and the Guangxi Key Laboratory of Multisource Information Mining and Security, Guangxi Normal University, Guilin, China
– sequence: 2
  givenname: Qingyong
  orcidid: 0000-0001-9434-3968
  surname: Deng
  fullname: Deng, Qingyong
  email: qydeng@gxnu.edu.cn
  organization: Key Laboratory of Education Blockchain and Intelligent Technology, Ministry of Education, and the Guangxi Key Laboratory of Multisource Information Mining and Security, Guangxi Normal University, Guilin, China
– sequence: 3
  givenname: Zhetao
  orcidid: 0000-0002-7804-0286
  surname: Li
  fullname: Li, Zhetao
  email: liztchina@hotmail.com
  organization: College of Information Science and Technology, Jinan University, Guangzhou, China
– sequence: 4
  givenname: Saiqin
  orcidid: 0000-0001-7119-8673
  surname: Long
  fullname: Long, Saiqin
  email: xxgcxyxtu@sina.com
  organization: College of Information Science and Technology, Jinan University, Guangzhou, China
– sequence: 5
  givenname: Haolin
  orcidid: 0000-0003-3192-6378
  surname: Liu
  fullname: Liu, Haolin
  email: liu.haolin@foxmail.com
  organization: School of Computer Science, Xiangtan University, Xiangtan, Hunan, China
– sequence: 6
  givenname: Xiaoyi
  orcidid: 0000-0002-2763-2695
  surname: Pang
  fullname: Pang, Xiaoyi
  email: xypang@whu.edu.cn
  organization: School of Cyber Science and Technology, Zhejiang University, Hangzhou, China
BookMark eNp9kE1PwkAQhjcGExH5ASYeNvFc3I92t3sE4gcGgwpGb812O9VFaHG3xfDvLcKBePD0zuF9ZjLPKWoVZQEInVPSo5Soq_vRZNZjhIU9zqWQSh2hNuNMBqEQrHUwn6Cu93NCSINFVIk2ehuXRle2LLAuMjywGX50dq3Npknw4Na2eA8G2kOGn2q9sNUm6H9rB_i1dJ_g8DMYV9tqCUWFp-YDloBtgR-G0zN0nOuFh-4-O-jl5no2vAvGk9vRsD8ODFNhFWS5yeKMKSklDTMtJE-jmMYMTCRoamgU5zkLKTM05RFlXKQx0QzCTCgjQ1C8gy53e1eu_KrBV8m8rF3RnEw4EVHzNeGsacldy7jSewd5Ymz1-3fltF0klCRbk8nWZLI1mexNNiT9Q66cXWq3-Ze52DEWAA76oWSccv4DaLp_kA
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_TMC_2025_3564404
crossref_primary_10_1109_TNSE_2025_3559563
crossref_primary_10_1016_j_adhoc_2025_103839
crossref_primary_10_1016_j_iot_2025_101689
crossref_primary_10_1038_s41598_025_02530_w
crossref_primary_10_1109_TSC_2025_3565374
Cites_doi 10.1109/ACCESS.2023.3342158
10.1145/1644038.1644048
10.1016/j.comnet.2023.109600
10.1007/s11280-022-01047-w
10.1109/TDSC.2022.3145649
10.1109/TIFS.2020.2975925
10.1109/TVT.2022.3170505
10.1016/j.future.2023.03.022
10.1109/TVT.2021.3117696
10.1016/j.future.2019.04.043
10.1109/TMC.2020.3040138
10.1109/jiot.2023.3318597
10.1109/JIOT.2022.3233052
10.1109/JIOT.2023.3325274
10.1016/j.cose.2023.103516
10.1109/TSC.2022.3172136
10.1145/2668332.2668346
10.1109/TII.2021.3109437
10.1109/TCE.2023.3264217
10.1145/3431502
10.1109/TMC.2021.3133365
10.1016/j.eswa.2023.122132
10.1016/j.ins.2023.119444
10.1016/j.jnca.2023.103634
10.1109/TMC.2021.3064324
10.1109/TDSC.2022.3186023
10.1109/TKDE.2020.2992531
10.1109/TMC.2019.2908638
10.1109/JIOT.2023.3292920
10.1109/TSMC.2023.3298513
10.1109/TCSS.2019.2907059
10.1109/TMC.2021.3136236
10.1109/TNSM.2022.3217689
10.1109/jiot.2023.3298814
10.1109/JIOT.2021.3113997
10.1016/j.knosys.2023.110330
10.1109/tiv.2023.3321300
10.1016/j.future.2022.09.022
10.1109/TIFS.2022.3207905
10.1109/TMC.2021.3112394
10.1109/TSC.2023.3292498
10.1109/TMC.2021.3059346
10.1145/1460412.1460444
10.1109/tnn.1998.712192
10.1109/jiot.2023.3308072
10.1109/TIFS.2016.2570740
10.1109/jiot.2023.3348837
10.1016/j.future.2023.09.027
10.1109/TKDE.2021.3054409
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2024.3376799
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 21856
ExternalDocumentID 10_1109_JIOT_2024_3376799
10472313
Genre orig-research
GrantInformation_xml – fundername: Research Fund of Guangxi Key Laboratory of Multisource Information Mining and Security
  grantid: 22-A-02-01
– fundername: National Natural Science Foundation of China
  grantid: 62076214; 62032020; U23B2027; 62172350; 62372396
  funderid: 10.13039/501100001809
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2024A1515010214
  funderid: 10.13039/501100021171
– fundername: Project of Guangxi Science and Technology, China
  grantid: 2023GXNSFDA026003
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-dfcd8d2977714da673b58182ec561bc158ff2412c1b351236b80a2e4d69c74e93
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001242362600077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Mon Jun 30 05:03:08 EDT 2025
Sat Nov 29 01:44:02 EST 2025
Tue Nov 18 21:25:26 EST 2025
Wed Aug 27 02:06:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-dfcd8d2977714da673b58182ec561bc158ff2412c1b351236b80a2e4d69c74e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2763-2695
0000-0003-3192-6378
0009-0009-6869-6001
0000-0001-9434-3968
0000-0001-7119-8673
0000-0002-7804-0286
PQID 3065466032
PQPubID 2040421
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_JIOT_2024_3376799
crossref_primary_10_1109_JIOT_2024_3376799
ieee_primary_10472313
proquest_journals_3065466032
PublicationCentury 2000
PublicationDate 2024-06-15
PublicationDateYYYYMMDD 2024-06-15
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
Bracciale (ref49) 2014
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref14
  doi: 10.1109/ACCESS.2023.3342158
– ident: ref12
  doi: 10.1145/1644038.1644048
– ident: ref18
  doi: 10.1016/j.comnet.2023.109600
– ident: ref41
  doi: 10.1007/s11280-022-01047-w
– ident: ref44
  doi: 10.1109/TDSC.2022.3145649
– ident: ref20
  doi: 10.1109/TIFS.2020.2975925
– ident: ref26
  doi: 10.1109/TVT.2022.3170505
– ident: ref21
  doi: 10.1016/j.future.2023.03.022
– ident: ref30
  doi: 10.1109/TVT.2021.3117696
– ident: ref42
  doi: 10.1016/j.future.2019.04.043
– ident: ref37
  doi: 10.1109/TMC.2020.3040138
– ident: ref29
  doi: 10.1109/jiot.2023.3318597
– ident: ref15
  doi: 10.1109/JIOT.2022.3233052
– volume-title: CRAWDAD dataset roma/taxi (v. 2014-07-17)
  year: 2014
  ident: ref49
– ident: ref8
  doi: 10.1109/JIOT.2023.3325274
– ident: ref11
  doi: 10.1016/j.cose.2023.103516
– ident: ref4
  doi: 10.1109/TSC.2022.3172136
– ident: ref10
  doi: 10.1145/2668332.2668346
– ident: ref17
  doi: 10.1109/TII.2021.3109437
– ident: ref7
  doi: 10.1109/TCE.2023.3264217
– ident: ref47
  doi: 10.1145/3431502
– ident: ref38
  doi: 10.1109/TMC.2021.3133365
– ident: ref1
  doi: 10.1016/j.eswa.2023.122132
– ident: ref45
  doi: 10.1016/j.ins.2023.119444
– ident: ref5
  doi: 10.1016/j.jnca.2023.103634
– ident: ref33
  doi: 10.1109/TMC.2021.3064324
– ident: ref19
  doi: 10.1109/TDSC.2022.3186023
– ident: ref31
  doi: 10.1109/TKDE.2020.2992531
– ident: ref22
  doi: 10.1109/TMC.2019.2908638
– ident: ref24
  doi: 10.1109/JIOT.2023.3292920
– ident: ref35
  doi: 10.1109/TSMC.2023.3298513
– ident: ref25
  doi: 10.1109/TCSS.2019.2907059
– ident: ref43
  doi: 10.1109/TMC.2021.3136236
– ident: ref3
  doi: 10.1109/TNSM.2022.3217689
– ident: ref48
  doi: 10.1109/jiot.2023.3298814
– ident: ref27
  doi: 10.1109/JIOT.2021.3113997
– ident: ref23
  doi: 10.1016/j.knosys.2023.110330
– ident: ref34
  doi: 10.1109/tiv.2023.3321300
– ident: ref46
  doi: 10.1016/j.future.2022.09.022
– ident: ref40
  doi: 10.1109/TIFS.2022.3207905
– ident: ref16
  doi: 10.1109/TMC.2021.3112394
– ident: ref2
  doi: 10.1109/TSC.2023.3292498
– ident: ref32
  doi: 10.1109/TMC.2021.3059346
– ident: ref13
  doi: 10.1145/1460412.1460444
– ident: ref50
  doi: 10.1109/tnn.1998.712192
– ident: ref9
  doi: 10.1109/jiot.2023.3308072
– ident: ref6
  doi: 10.1109/TIFS.2016.2570740
– ident: ref28
  doi: 10.1109/jiot.2023.3348837
– ident: ref36
  doi: 10.1016/j.future.2023.09.027
– ident: ref39
  doi: 10.1109/TKDE.2021.3054409
SSID ssj0001105196
Score 2.3418288
Snippet Mobile crowd sensing (MCS) has become a prevalent large-scale and low-cost data collection paradigm by employing workers, and the location and bid privacy of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21841
SubjectTerms Algorithms
Cryptography
Data collection
Data privacy
Encryption
Greedy algorithms
Location and bid privacy
mobile crowd sensing (MCS)
Privacy
privacy preserving
quality aware
Recruitment
Sensors
Task analysis
worker recruitment
Workers
Title Location and Bid Privacy Preserving-Based Quality-Aware Worker Recruitment Scheme in MCS
URI https://ieeexplore.ieee.org/document/10472313
https://www.proquest.com/docview/3065466032
Volume 11
WOSCitedRecordID wos001242362600077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9u-OCL82PidEoefBKytelH0sdtOFTmHDhlb6VNUi1oJ92H7L83l3ZOEAXf-pAcJZfc_XK5-x1CF56MpWBUETthjLiJigl3JCXgC3isAQM1XHpPAzYc8skkGJXF6qYWRillks9UCz7NW76cigWEytpAK6DxiFNBFcb8olhrE1CxAY345culbQXt25v7sb4BUrflAGeJoXfd-B7TTOWHBTZupV_75w_tod0SP-JOofB9tKWyA1Rb92bA5VE9RJPBtAjG4SiTuJtKPMrTZSRWGJIuwEBkz6SrXZjEBY3GinQ-olxhiJ5rQQAnF6lJQddCX9SbwmmG73oPdfTYvxr3rknZRYEIGrhzIhMhuaQa5zHblZHPnNjTXpoqoaFTLGyPJ4l241TYseMBF0vMrYgqV_qBYK4KnCNUzaaZOkaYRxotcQNiuKuhQCS0uFhbAI3TBPdFA1nr9Q1FSTEOnS5eQ3PVsIIQVBKCSsJSJQ10-TXlveDX-GtwHXTwbWCx_A3UXGsxLI_gLHRMo3ffcujJL9NO0Q5Ih8Qv22ui6jxfqDO0LZbzdJafm931CR3Ey7g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SXBhPMV45sAJKdCmr_S4TaABY0xioN2qNkmhEnRobCD-PXGaARICiVsPiVvFjf3FsT8DHAYykyJiirp5FFE_VxnlnmQUfQHPNGBghkvvrhN1u3wwiHu2WN3UwiilTPKZOsZHc5cvh2KCobITpBXQeMSbhXlsnWXLtb5CKi7ikdDeXbpOfHJxft3XZ0DmH3vIWmIIXr-8j2mn8sMGG8dyVvvnJ63AskWQpFGpfBVmVLkGtWl3BmI36zoMOsMqHEfSUpJmIUlvVLym4p1g2gWaiPKeNrUTk6Qi0ninjbd0pAjGz7UgBJSTwiSha6EP6kmRoiRXrZsNuD077bfa1PZRoILF_pjKXEgumUZ6kevLNIy8LNB-mimhwVMm3IDnuXbkTLiZFyAbS8adlClfhrGIfBV7mzBXDku1BYSnGi9xA2O4r8FAKrS4TNsAjdQED0UdnOn6JsKSjGOvi8fEHDacOEGVJKiSxKqkDkefU54rho2_Bm-gDr4NrJa_DrtTLSZ2E74knmn1Hjoe2_5l2gEstvtXnaRz3r3cgSV8E6aBucEuzI1HE7UHC-J1XLyM9s2f9gHl8c8B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Location+and+Bid+Privacy+Preserving-Based+Quality-Aware+Worker+Recruitment+Scheme+in+MCS&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Shi%2C+Weifan&rft.au=Deng%2C+Qingyong&rft.au=Li%2C+Zhetao&rft.au=Long%2C+Saiqin&rft.date=2024-06-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=11&rft.issue=12&rft.spage=21841&rft_id=info:doi/10.1109%2FJIOT.2024.3376799&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon