MSCSCformer: Multiscale Convolutional Sparse Coding-Based Transformer for Pansharpening
With the increasing significance of high-quality, high-resolution multispectral images (HRMSs) in various domains, pansharpening, which fuses low-resolution multispectral images (LRMSs) with high-resolution panchromatic (PAN) images, has gained considerable attention. However, current deep-learning...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on geoscience and remote sensing Jg. 62; S. 1 - 12 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | With the increasing significance of high-quality, high-resolution multispectral images (HRMSs) in various domains, pansharpening, which fuses low-resolution multispectral images (LRMSs) with high-resolution panchromatic (PAN) images, has gained considerable attention. However, current deep-learning (DL) methods have limitations in capturing global long-range dependencies and incorporating spectral characteristics across different spectral bands of multispectral (MS) images. Additionally, model-based approaches do not effectively utilize the multiscale information between LRMS and HRMS data, limiting their further performance enhancement. To address these limitations, we propose a new observation model based on multiscale convolutional sparse coding (MS-CSC) and design a novel multiscale hybrid spatial-spectral transformer (MSHST) for the unfolding networks. The MS-CSC-based observation model aims to fuse multiscale information, while the MSHST incorporates spatial self-attention to capture global long-range dependencies and spectral self-attention to capture the interband correlation. Experimental results demonstrate the superiority of our method over other state-of-the-art approaches in both reduced-resolution and full-resolution evaluations. Ablation experiments further validate the effectiveness of the proposed multiscale model and MSHST. Code is available at https://github.com/Eternityyx/MSCSCformer . |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0196-2892 1558-0644 |
| DOI: | 10.1109/TGRS.2024.3391355 |