faaShark: An End-to-End Network Traffic Analysis System Atop Serverless Computing

The prosperity of the Internet has made network traffic analysis increasingly indispensable in network operation. With the development of machine learning, more researchers and engineers are using deep learning models for network traffic analysis. However, the rapidly growing data size and model com...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on network science and engineering Ročník 11; číslo 3; s. 2473 - 2484
Hlavní autoři: Zhao, Hongyu, Pan, Shanxing, Cai, Zinuo, Chen, Xinglei, Jin, Lingxiao, Gao, Honghao, Wan, Shaohua, Ma, Ruhui, Guan, Haibing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2327-4697, 2334-329X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The prosperity of the Internet has made network traffic analysis increasingly indispensable in network operation. With the development of machine learning, more researchers and engineers are using deep learning models for network traffic analysis. However, the rapidly growing data size and model complexity make resource scheduling a serious limitation, which is why cloud computing services are typically required for network analysis. To leverage the advantages of serverless platforms, we propose faaShark , an end-to-end network traffic analysis system based on a serverless computing platform. faaShark adapts distributed training to fully utilize the flexibility of serverless platforms. Additionally, we design a cold start optimization algorithm to reduce the hit rate of cold start when serving pretrained models to handle network analysis requests. Our extensive experiments evaluate the impact of several parameters of distributed training and confirm the effectiveness of our cold start optimization algorithm when building such a network analysis system atop serverless computing frameworks.
AbstractList The prosperity of the Internet has made network traffic analysis increasingly indispensable in network operation. With the development of machine learning, more researchers and engineers are using deep learning models for network traffic analysis. However, the rapidly growing data size and model complexity make resource scheduling a serious limitation, which is why cloud computing services are typically required for network analysis. To leverage the advantages of serverless platforms, we propose faaShark , an end-to-end network traffic analysis system based on a serverless computing platform. faaShark adapts distributed training to fully utilize the flexibility of serverless platforms. Additionally, we design a cold start optimization algorithm to reduce the hit rate of cold start when serving pretrained models to handle network analysis requests. Our extensive experiments evaluate the impact of several parameters of distributed training and confirm the effectiveness of our cold start optimization algorithm when building such a network analysis system atop serverless computing frameworks.
Author Chen, Xinglei
Guan, Haibing
Pan, Shanxing
Jin, Lingxiao
Zhao, Hongyu
Gao, Honghao
Cai, Zinuo
Wan, Shaohua
Ma, Ruhui
Author_xml – sequence: 1
  givenname: Hongyu
  orcidid: 0009-0004-1410-2018
  surname: Zhao
  fullname: Zhao, Hongyu
  email: sjtu-zhy@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Shanxing
  orcidid: 0000-0001-7791-9064
  surname: Pan
  fullname: Pan, Shanxing
  email: bloom66@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Zinuo
  orcidid: 0000-0001-9373-8474
  surname: Cai
  fullname: Cai, Zinuo
  email: kingczn1314@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Xinglei
  orcidid: 0009-0003-3586-7798
  surname: Chen
  fullname: Chen, Xinglei
  email: chen1556805501@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Lingxiao
  orcidid: 0009-0003-5779-9407
  surname: Jin
  fullname: Jin, Lingxiao
  email: 305731899@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 6
  givenname: Honghao
  orcidid: 0000-0001-6861-9684
  surname: Gao
  fullname: Gao, Honghao
  email: gaohonghao@shu.edu.cn
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai, China
– sequence: 7
  givenname: Shaohua
  orcidid: 0000-0001-7013-9081
  surname: Wan
  fullname: Wan, Shaohua
  email: shaohua.wan@uestc.edu.cn
  organization: Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, China
– sequence: 8
  givenname: Ruhui
  orcidid: 0000-0001-9592-8490
  surname: Ma
  fullname: Ma, Ruhui
  email: ruhuima@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 9
  givenname: Haibing
  orcidid: 0000-0002-4714-7400
  surname: Guan
  fullname: Guan, Haibing
  email: hbguan@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
BookMark eNp9kE1LAzEQhoNUsNb-AMHDguetySabD2-l1A8oFdkK3pZ0N9G0282apEr_vVnqQTx4mhnmfWdennMwaG2rALhEcIIQFDerZTGfZDDDE5wJQiA9AcMMY5LG8XXQ9xlLCRXsDIy930AIUcYpxngInrWUxbt029tk2ibztk6DTWNJlip8WbdNVk5qbaq4lc3BG58UBx_ULpkG2yWFcp_KNcr7ZGZ33T6Y9u0CnGrZeDX-qSPwcjdfzR7SxdP942y6SKuYMaQ1ZwxRtNa5UGteVTmUtSYSrSUVCsbAohaMEkZ5TjAlkggutK5FzmssOarwCFwf73bOfuyVD-XG7l1M6UsMiSA8ksBRhY6qylnvndJl58xOukOJYNnDK3t4ZQ-v_IEXPeyPpzJBBmPb4KRp_nVeHZ1GKfXrE2JMcIS_AW_yfWI
CODEN ITNSD5
CitedBy_id crossref_primary_10_1007_s00607_024_01335_5
crossref_primary_10_1109_TC_2024_3485202
crossref_primary_10_1145_3747846
crossref_primary_10_1002_ett_4945
crossref_primary_10_1109_TPDS_2025_3548320
crossref_primary_10_1109_TAI_2024_3429480
Cites_doi 10.1109/BigData.2018.8622362
10.1109/CCGrid51090.2021.00097
10.1145/3477132.3483580
10.2478/acss-2018-0003
10.1109/INFOCOM.2019.8737391
10.1145/3488375
10.1016/j.comcom.2021.01.021
10.1145/2620728.2620739
10.1016/j.comnet.2014.03.007
10.1016/j.measurement.2016.10.026
10.14778/3415478.3415530
10.1109/INFOCOM41043.2020.9155299
10.1145/3508360
10.1109/MLHPC.2016.006
10.1109/TC.2021.3054656
10.1016/j.adhoc.2020.102258
10.1145/3448016.3459240
10.1016/j.inffus.2018.10.013
10.1145/3423211.3425682
10.1109/MCOM.001.1900283
10.1016/j.cose.2019.101645
10.1145/3464298.3494884
10.1109/ICIW.2010.91
10.1109/MIC.2017.2911430
10.1145/3357223.3362711
10.1109/TNSM.2019.2933358
10.1145/3267809.3267815
10.1109/MNET.2014.6863129
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2023.3294406
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 2484
ExternalDocumentID 10_1109_TNSE_2023_3294406
10177981
Genre orig-research
GrantInformation_xml – fundername: China Institute of IoT
– fundername: Shanghai Key Laboratory of Scalable Computing and Systems
– fundername: Eighth Research Institute in China Aerospace Science and Technology Corporation
  grantid: USCAST2022-17
– fundername: Wuxi IoT Innovation Promotion Center
  grantid: 2022SP-T13-C
– fundername: Internet of Things special subject program
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-d877161bf59eb8cc50adf4a1ba69e03279d976476854364a4989ffd958d3a81c3
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001214548200065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4697
IngestDate Mon Jun 30 09:50:49 EDT 2025
Tue Nov 18 21:58:06 EST 2025
Sat Nov 29 04:55:55 EST 2025
Wed Aug 27 02:06:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-d877161bf59eb8cc50adf4a1ba69e03279d976476854364a4989ffd958d3a81c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4714-7400
0000-0001-9373-8474
0009-0003-5779-9407
0000-0001-9592-8490
0000-0001-7791-9064
0009-0004-1410-2018
0009-0003-3586-7798
0000-0001-6861-9684
0000-0001-7013-9081
PQID 3049489443
PQPubID 2040409
PageCount 12
ParticipantIDs ieee_primary_10177981
proquest_journals_3049489443
crossref_primary_10_1109_TNSE_2023_3294406
crossref_citationtrail_10_1109_TNSE_2023_3294406
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
(ref23) 2023
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref39
ref16
ref38
Dimpi (ref7) 2014; 4
(ref22) 2023
Mahgoub (ref17) 2022
ref26
ref25
(ref24) 2023
(ref19) 2023
ref28
Armbrust (ref18) 2009
ref27
ref29
Bhattacharjee (ref37) 2019
ref8
(ref20) 2023
(ref30) 2023
ref9
ref4
(ref21) 2023
ref3
ref6
ref40
Jonas (ref5) 2019
References_xml – ident: ref35
  doi: 10.1109/BigData.2018.8622362
– ident: ref32
  doi: 10.1109/CCGrid51090.2021.00097
– ident: ref33
  doi: 10.1145/3477132.3483580
– year: 2009
  ident: ref18
  article-title: Above the clouds: A Berkeley view of cloud computing
– ident: ref16
  doi: 10.2478/acss-2018-0003
– ident: ref28
  doi: 10.1109/INFOCOM.2019.8737391
– year: 2023
  ident: ref30
  article-title: Deep-Packet
– year: 2023
  ident: ref20
  article-title: Azure Functions
– year: 2023
  ident: ref24
  article-title: Fission
– ident: ref15
  doi: 10.1145/3488375
– year: 2023
  ident: ref19
  article-title: AWS Lambda
– ident: ref4
  doi: 10.1016/j.comcom.2021.01.021
– year: 2023
  ident: ref23
  article-title: OpenWhisk
– year: 2023
  ident: ref21
  article-title: Google Cloud Functions
– ident: ref9
  doi: 10.1145/2620728.2620739
– ident: ref1
  doi: 10.1016/j.comnet.2014.03.007
– ident: ref8
  doi: 10.1016/j.measurement.2016.10.026
– ident: ref39
  doi: 10.14778/3415478.3415530
– ident: ref11
  doi: 10.1109/INFOCOM41043.2020.9155299
– ident: ref6
  doi: 10.1145/3508360
– ident: ref25
  doi: 10.1109/MLHPC.2016.006
– ident: ref40
  doi: 10.1109/TC.2021.3054656
– ident: ref12
  doi: 10.1016/j.adhoc.2020.102258
– ident: ref29
  doi: 10.1145/3448016.3459240
– ident: ref2
  doi: 10.1016/j.inffus.2018.10.013
– ident: ref31
  doi: 10.1145/3423211.3425682
– ident: ref13
  doi: 10.1109/MCOM.001.1900283
– volume: 4
  issue: 6
  year: 2014
  ident: ref7
  article-title: A comparative study of SaaS, PaaS and IaaS in cloud computing
  publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng.
– ident: ref10
  doi: 10.1016/j.cose.2019.101645
– ident: ref38
  doi: 10.1145/3464298.3494884
– start-page: 59
  volume-title: Proc. USENIX Conf. Oper. Mach. Learn.
  year: 2019
  ident: ref37
  article-title: Stratum: A serverless framework for the lifecycle management of machine learning-based data analytics tasks
– year: 2023
  ident: ref22
  article-title: OpenFaas
– ident: ref26
  doi: 10.1109/ICIW.2010.91
– ident: ref36
  doi: 10.1109/MIC.2017.2911430
– start-page: 303
  volume-title: Proc. USENIX Symp. Operating Syst. Des. Implementation
  year: 2022
  ident: ref17
  article-title: Orion and the three rights: Sizing, bundling, and prewarming for serverless dags
– ident: ref27
  doi: 10.1145/3357223.3362711
– ident: ref14
  doi: 10.1109/TNSM.2019.2933358
– ident: ref34
  doi: 10.1145/3267809.3267815
– year: 2019
  ident: ref5
  article-title: Cloud programming simplified: A Berkeley view on serverless computing
– ident: ref3
  doi: 10.1109/MNET.2014.6863129
SSID ssj0001286333
Score 2.3205018
Snippet The prosperity of the Internet has made network traffic analysis increasingly indispensable in network operation. With the development of machine learning,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2473
SubjectTerms Algorithms
Analytical models
Cloud computing
cold start
Communications traffic
Computational modeling
Deep learning
Design optimization
distributed training
Load modeling
Machine learning
Network analysis
Network traffic analysis
Optimization algorithms
Resource scheduling
Serverless computing
Telecommunication traffic
Traffic analysis
Traffic models
Training
Title faaShark: An End-to-End Network Traffic Analysis System Atop Serverless Computing
URI https://ieeexplore.ieee.org/document/10177981
https://www.proquest.com/docview/3049489443
Volume 11
WOSCitedRecordID wos001214548200065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2334-329X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286333
  issn: 2327-4697
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBz4nTKTl4ErK1e69t4m3IhqehOGG3kuYDROnG1vn3mzSdDETBU3vIC-17Sd57Sd7vR8itRhUhQsGUBmQoFTKBccy0tgNbWAmQBrKJbDLhs5l4aorV61oYY0x9-cz0_Gt9lq_nau23yvp--GTCF1rvZlkWirW2NlR4CgDNyWUcif508jLqeXrwHgwEoic12vI9NZnKjxW4divjo39-0DE5bOJHOgwGPyE7pjwlB1uogmfk2UrpcZjf7-mwpKNSs2rO3INOwpVv6vyTB46gG0ASGmDL6bCaL6hfPIw_gV_RwPjg-myT1_Fo-vDIGuYEptyfVkzzzOVBcWETYQquVBJJbVHGhUyFiWCQCe3CEHSpRoKQokTBhbVaJFyD5LGCc9Iq56W5INSkqXWhbcKh4C47UgVGvFCgXKjnQhmEDok2Os1VAyvu2S0-8jq9iETuzZB7M-SNGTrk7ltkETA1_mrc9nrfahhU3iHdjeXyZtqtcqjRbpwcXP4idkX2Xe8Yrix2Satars012VOf1dtqeVOPqC8YJMiU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-igvrgtzg_8-CTkNnurl3i25CNiVoUJ_hW0nyAKN1w1b_fpOlkIAo-tQ-5tsmlubvk7vcj5EyjihChYEoDMpQKmcA4Zlrbji2sBEgD2UQ3y_jzs7hvitXrWhhjTJ18Ztr-tj7L12P14bfKLvz06QpfaL2UIHbiUK41t6XCUwBozi7jSFyMssd-2xOEt6EjED2t0Zz1qelUfqzBtWEZbPzzkzbJeuNB0l5Q-RZZMOU2WZvDFdwhD1ZKj8T8ekl7Je2XmlVj5i40C0nf1FkoDx1BZ5AkNACX0141nlC_fBh_Bj-lgfPBPXOXPA36o6sha7gTmHI9rZjmXRcJxYVNhCm4UkkktUUZFzIVJoJOV2jniKALNhKEFCUKLqzVIuEaJI8V7JHFclyafUJNmlrn3CYcCu7iI1VgxAsFyjl7zplBaJFoNqa5aoDFPb_FW14HGJHIvRpyr4a8UUOLnH-LTAKqxl-Nd_24zzUMQ94iRzPN5c2PN82hxrtxcnDwi9gpWRmO7m7z2-vs5pCsujdhSGA8IovV-4c5Jsvqs3qZvp_Us-sLsqbL2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=faaShark+%3A+an+End-to-End+Network+Traffic+Analysis+System+atop+Serverless+Computing&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Zhao%2C+Hongyu&rft.au=Pan%2C+Shanxing&rft.au=Cai%2C+Zinuo&rft.au=Chen%2C+Xinglei&rft.date=2024-05-01&rft.issn=2327-4697&rft.eissn=2334-329X&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTNSE.2023.3294406&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSE_2023_3294406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon