Practical Trainable Temporal Postprocessor for Multistate Quantum Measurement

We develop and demonstrate a trainable temporal postprocessor (TPP) harnessing a simple but versatile machine learning algorithm to provide optimal processing of quantum measurement data subject to arbitrary noise processes for the readout of an arbitrary number of quantum states. We demonstrate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PRX quantum Jg. 5; H. 2
Hauptverfasser: Khan, Saeed A., Kaufman, Ryan, Mesits, Boris, Hatridge, Michael, Türeci, Hakan E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 21.06.2024
ISSN:2691-3399, 2691-3399
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We develop and demonstrate a trainable temporal postprocessor (TPP) harnessing a simple but versatile machine learning algorithm to provide optimal processing of quantum measurement data subject to arbitrary noise processes for the readout of an arbitrary number of quantum states. We demonstrate the TPP on the essential task of qubit state readout, which has historically relied on temporal processing via matched filters in spite of their applicability for only specific noise conditions. Our results show that the TPP can reliably outperform standard filtering approaches under complex readout conditions, such as high-power readout. Using simulations of quantum measurement noise sources, we show that this advantage relies on the TPP’s ability to learn optimal linear filters that account for general quantum noise correlations in data, such as those due to quantum jumps, or correlated noise added by a phase-preserving quantum amplifier. Furthermore, we derive an exact analytic form for the optimal TPP weights: this positions the TPP as a linearly scaling generalization of matched filtering, valid for an arbitrary number of states under the most general readout noise conditions, all while preserving a training complexity that is essentially negligible in comparison with that of training neural networks for processing temporal quantum measurement data. The TPP can be autonomously and reliably trained on measurement data and requires only linear operations, making it ideal for field-programmable gate array implementations in circuit QED for real-time processing of measurement data from general quantum systems.
AbstractList We develop and demonstrate a trainable temporal postprocessor (TPP) harnessing a simple but versatile machine learning algorithm to provide optimal processing of quantum measurement data subject to arbitrary noise processes for the readout of an arbitrary number of quantum states. We demonstrate the TPP on the essential task of qubit state readout, which has historically relied on temporal processing via matched filters in spite of their applicability for only specific noise conditions. Our results show that the TPP can reliably outperform standard filtering approaches under complex readout conditions, such as high-power readout. Using simulations of quantum measurement noise sources, we show that this advantage relies on the TPP’s ability to learn optimal linear filters that account for general quantum noise correlations in data, such as those due to quantum jumps, or correlated noise added by a phase-preserving quantum amplifier. Furthermore, we derive an exact analytic form for the optimal TPP weights: this positions the TPP as a linearly scaling generalization of matched filtering, valid for an arbitrary number of states under the most general readout noise conditions, all while preserving a training complexity that is essentially negligible in comparison with that of training neural networks for processing temporal quantum measurement data. The TPP can be autonomously and reliably trained on measurement data and requires only linear operations, making it ideal for field-programmable gate array implementations in circuit QED for real-time processing of measurement data from general quantum systems.
ArticleNumber 020364
Author Mesits, Boris
Türeci, Hakan E.
Kaufman, Ryan
Khan, Saeed A.
Hatridge, Michael
Author_xml – sequence: 1
  givenname: Saeed A.
  orcidid: 0000-0002-8047-4657
  surname: Khan
  fullname: Khan, Saeed A.
– sequence: 2
  givenname: Ryan
  orcidid: 0000-0002-4467-1987
  surname: Kaufman
  fullname: Kaufman, Ryan
– sequence: 3
  givenname: Boris
  orcidid: 0000-0001-5074-6853
  surname: Mesits
  fullname: Mesits, Boris
– sequence: 4
  givenname: Michael
  orcidid: 0000-0002-0848-7867
  surname: Hatridge
  fullname: Hatridge, Michael
– sequence: 5
  givenname: Hakan E.
  orcidid: 0000-0003-4210-3027
  surname: Türeci
  fullname: Türeci, Hakan E.
BookMark eNp9kM1KxDAQgIOs4LruE3jpC7TOJG26OcriH-xilRW8lWmaQqVtSpIefHsru6B48DDMMPDNz3fJFoMdDGPXCAkiiJvi9f1loiFMfZIlwEHI9IwtuVQYC6HU4ld9wdbefwAAz1BgqpZsXzjSodXURQdH7UBVZ6KD6Ufr5lZhfRid1cZ766Jmjv3UhdYHCiY6LY32hvzkTG-GcMXOG-q8WZ_yir3d3x22j_Hu-eFpe7uLNVdpiOu84RVUjaZ6w5FAoU4xFyhTSblSoDOomwxkjlJqpTKFqHOqVbXRIuecxIqp41ztrPfONKVu55taO4T5ia5EKL_VlD9qyqw8qplZ8YcdXduT-_yX-gJ9X24A
CitedBy_id crossref_primary_10_1103_PhysRevApplied_24_014052
crossref_primary_10_1007_s42484_025_00261_9
Cites_doi 10.1103/PhysRevLett.132.100603
10.1016/j.neunet.2019.03.005
10.1063/1.5048199
10.1038/s41534-023-00689-6
10.1103/PhysRevApplied.18.034031
10.1103/PhysRevX.5.021025
10.1103/PhysRevX.11.041062
10.1109/TIT.1960.1057571
10.1002/qute.202100027
10.1103/PhysRevApplied.20.034027
10.1038/s41467-021-25801-2
10.1103/PhysRevApplied.5.011001
10.1103/PhysRevApplied.17.014024
10.1103/RevModPhys.93.025005
10.1103/PhysRevA.93.062310
10.1103/PhysRevApplied.20.054058
10.1063/1.5010300
10.1103/PhysRevA.76.012325
10.1103/PhysRevLett.132.090602
10.1103/PhysRevApplied.20.054008
10.1103/PhysRevApplied.15.064029
10.1103/PhysRevB.87.024510
10.1103/PRXQuantum.2.040313
10.1103/PhysRevApplied.8.054030
10.1109/ACCESS.2020.2976199
10.1016/j.crhy.2016.07.012
10.1038/s41467-021-22030-5
10.1088/2632-072X/ac24f3
10.1103/PhysRevB.92.224304
10.1103/PhysRevLett.94.123602
10.1103/PhysRevApplied.7.054020
10.1103/PhysRevApplied.15.064030
10.1103/PhysRevLett.120.024102
10.1103/PhysRevApplied.20.014045
10.1038/s41586-018-0195-y
10.1103/PhysRevB.101.134510
10.1103/PhysRevLett.127.100502
10.1103/PhysRevLett.117.190503
10.1103/PhysRevApplied.17.044016
10.1109/MSP.2012.2211477
10.1109/MMM.2020.2993476
10.1063/1.5120710
10.1103/PhysRevApplied.17.034064
10.1103/PRXQuantum.4.020312
10.1103/PhysRevX.7.011015
10.1103/PhysRevResearch.3.043228
10.1038/nphys1400
10.1103/PhysRevA.94.012347
10.1103/PhysRevB.101.134509
10.1103/PhysRevA.92.062119
10.1038/s42005-021-00556-w
10.1103/PhysRevX.13.041020
10.1103/PhysRevA.93.060302
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1103/PRXQuantum.5.020364
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2691-3399
ExternalDocumentID 10_1103_PRXQuantum_5_020364
GroupedDBID 3MX
AAFWJ
AAYXX
AECSF
AFGMR
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
GROUPED_DOAJ
M~E
OK1
ROL
ID FETCH-LOGICAL-c294t-d7f2b0bfcad821a091c41731646a7990c50df5067166c995911c7ad9b8c3722a3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001258243000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2691-3399
IngestDate Sat Nov 29 05:13:43 EST 2025
Tue Nov 18 22:26:19 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-d7f2b0bfcad821a091c41731646a7990c50df5067166c995911c7ad9b8c3722a3
ORCID 0000-0002-4467-1987
0000-0001-5074-6853
0000-0003-4210-3027
0000-0002-8047-4657
0000-0002-0848-7867
OpenAccessLink http://link.aps.org/pdf/10.1103/PRXQuantum.5.020364
ParticipantIDs crossref_citationtrail_10_1103_PRXQuantum_5_020364
crossref_primary_10_1103_PRXQuantum_5_020364
PublicationCentury 2000
PublicationDate 2024-06-21
PublicationDateYYYYMMDD 2024-06-21
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-21
  day: 21
PublicationDecade 2020
PublicationTitle PRX quantum
PublicationYear 2024
References PRXQuantum.5.020364Cc45R1
PRXQuantum.5.020364Cc24R1
PRXQuantum.5.020364Cc47R1
PRXQuantum.5.020364Cc41R1
PRXQuantum.5.020364Cc20R1
PRXQuantum.5.020364Cc43R1
PRXQuantum.5.020364Cc49R1
PRXQuantum.5.020364Cc6R1
PRXQuantum.5.020364Cc28R1
PRXQuantum.5.020364Cc8R1
PRXQuantum.5.020364Cc2R1
PRXQuantum.5.020364Cc4R1
PRXQuantum.5.020364Cc50R1
PRXQuantum.5.020364Cc34R1
PRXQuantum.5.020364Cc55R1
PRXQuantum.5.020364Cc36R1
PRXQuantum.5.020364Cc57R1
PRXQuantum.5.020364Cc13R1
PRXQuantum.5.020364Cc51R1
PRXQuantum.5.020364Cc11R1
PRXQuantum.5.020364Cc32R1
PRXQuantum.5.020364Cc19R1
PRXQuantum.5.020364Cc15R1
PRXQuantum.5.020364Cc38R1
PRXQuantum.5.020364Cc59R1
T. Hastie (PRXQuantum.5.020364Cc44R1) 2016
PRXQuantum.5.020364Cc60R1
PRXQuantum.5.020364Cc23R1
PRXQuantum.5.020364Cc25R1
PRXQuantum.5.020364Cc46R1
PRXQuantum.5.020364Cc40R1
PRXQuantum.5.020364Cc21R1
PRXQuantum.5.020364Cc42R1
PRXQuantum.5.020364Cc7R1
PRXQuantum.5.020364Cc27R1
PRXQuantum.5.020364Cc48R1
PRXQuantum.5.020364Cc9R1
PRXQuantum.5.020364Cc29R1
PRXQuantum.5.020364Cc3R1
PRXQuantum.5.020364Cc1R1
PRXQuantum.5.020364Cc10R1
PRXQuantum.5.020364Cc33R1
PRXQuantum.5.020364Cc56R1
PRXQuantum.5.020364Cc35R1
PRXQuantum.5.020364Cc58R1
PRXQuantum.5.020364Cc14R1
PRXQuantum.5.020364Cc52R1
PRXQuantum.5.020364Cc12R1
PRXQuantum.5.020364Cc31R1
PRXQuantum.5.020364Cc54R1
PRXQuantum.5.020364Cc16R1
PRXQuantum.5.020364Cc39R1
PRXQuantum.5.020364Cc18R1
PRXQuantum.5.020364Cc61R1
References_xml – ident: PRXQuantum.5.020364Cc25R1
  doi: 10.1103/PhysRevLett.132.100603
– ident: PRXQuantum.5.020364Cc27R1
  doi: 10.1016/j.neunet.2019.03.005
– ident: PRXQuantum.5.020364Cc31R1
  doi: 10.1063/1.5048199
– ident: PRXQuantum.5.020364Cc54R1
  doi: 10.1038/s41534-023-00689-6
– ident: PRXQuantum.5.020364Cc14R1
  doi: 10.1103/PhysRevApplied.18.034031
– ident: PRXQuantum.5.020364Cc59R1
  doi: 10.1103/PhysRevX.5.021025
– ident: PRXQuantum.5.020364Cc4R1
  doi: 10.1103/PhysRevX.11.041062
– ident: PRXQuantum.5.020364Cc45R1
  doi: 10.1109/TIT.1960.1057571
– ident: PRXQuantum.5.020364Cc8R1
  doi: 10.1002/qute.202100027
– ident: PRXQuantum.5.020364Cc51R1
  doi: 10.1103/PhysRevApplied.20.034027
– ident: PRXQuantum.5.020364Cc28R1
  doi: 10.1038/s41467-021-25801-2
– ident: PRXQuantum.5.020364Cc58R1
  doi: 10.1103/PhysRevApplied.5.011001
– ident: PRXQuantum.5.020364Cc20R1
  doi: 10.1103/PhysRevApplied.17.014024
– ident: PRXQuantum.5.020364Cc42R1
  doi: 10.1103/RevModPhys.93.025005
– ident: PRXQuantum.5.020364Cc46R1
  doi: 10.1103/PhysRevA.93.062310
– ident: PRXQuantum.5.020364Cc52R1
  doi: 10.1103/PhysRevApplied.20.054058
– ident: PRXQuantum.5.020364Cc32R1
  doi: 10.1063/1.5010300
– volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  year: 2016
  ident: PRXQuantum.5.020364Cc44R1
– ident: PRXQuantum.5.020364Cc21R1
  doi: 10.1103/PhysRevA.76.012325
– ident: PRXQuantum.5.020364Cc15R1
  doi: 10.1103/PhysRevLett.132.090602
– ident: PRXQuantum.5.020364Cc13R1
  doi: 10.1103/PhysRevApplied.20.054008
– ident: PRXQuantum.5.020364Cc23R1
  doi: 10.1103/PhysRevApplied.15.064029
– ident: PRXQuantum.5.020364Cc41R1
  doi: 10.1103/PhysRevB.87.024510
– ident: PRXQuantum.5.020364Cc38R1
  doi: 10.1103/PRXQuantum.2.040313
– ident: PRXQuantum.5.020364Cc49R1
  doi: 10.1103/PhysRevApplied.8.054030
– ident: PRXQuantum.5.020364Cc40R1
  doi: 10.1109/ACCESS.2020.2976199
– ident: PRXQuantum.5.020364Cc1R1
  doi: 10.1016/j.crhy.2016.07.012
– ident: PRXQuantum.5.020364Cc3R1
  doi: 10.1038/s41467-021-22030-5
– ident: PRXQuantum.5.020364Cc35R1
  doi: 10.1088/2632-072X/ac24f3
– ident: PRXQuantum.5.020364Cc48R1
  doi: 10.1103/PhysRevB.92.224304
– ident: PRXQuantum.5.020364Cc55R1
  doi: 10.1103/PhysRevLett.94.123602
– ident: PRXQuantum.5.020364Cc18R1
  doi: 10.1103/PhysRevApplied.7.054020
– ident: PRXQuantum.5.020364Cc16R1
  doi: 10.1103/PhysRevApplied.15.064030
– ident: PRXQuantum.5.020364Cc33R1
  doi: 10.1103/PhysRevLett.120.024102
– ident: PRXQuantum.5.020364Cc29R1
  doi: 10.1103/PhysRevApplied.20.014045
– ident: PRXQuantum.5.020364Cc47R1
  doi: 10.1038/s41586-018-0195-y
– ident: PRXQuantum.5.020364Cc11R1
  doi: 10.1103/PhysRevB.101.134510
– ident: PRXQuantum.5.020364Cc7R1
  doi: 10.1103/PhysRevLett.127.100502
– ident: PRXQuantum.5.020364Cc9R1
  doi: 10.1103/PhysRevLett.117.190503
– ident: PRXQuantum.5.020364Cc24R1
  doi: 10.1103/PhysRevApplied.17.044016
– ident: PRXQuantum.5.020364Cc61R1
  doi: 10.1109/MSP.2012.2211477
– ident: PRXQuantum.5.020364Cc2R1
  doi: 10.1109/MMM.2020.2993476
– ident: PRXQuantum.5.020364Cc34R1
  doi: 10.1063/1.5120710
– ident: PRXQuantum.5.020364Cc50R1
  doi: 10.1103/PhysRevApplied.17.034064
– ident: PRXQuantum.5.020364Cc56R1
  doi: 10.1103/PRXQuantum.4.020312
– ident: PRXQuantum.5.020364Cc60R1
  doi: 10.1103/PhysRevX.7.011015
– ident: PRXQuantum.5.020364Cc12R1
  doi: 10.1103/PhysRevResearch.3.043228
– ident: PRXQuantum.5.020364Cc43R1
  doi: 10.1038/nphys1400
– ident: PRXQuantum.5.020364Cc57R1
  doi: 10.1103/PhysRevA.94.012347
– ident: PRXQuantum.5.020364Cc10R1
  doi: 10.1103/PhysRevB.101.134509
– ident: PRXQuantum.5.020364Cc19R1
  doi: 10.1103/PhysRevA.92.062119
– ident: PRXQuantum.5.020364Cc6R1
  doi: 10.1038/s42005-021-00556-w
– ident: PRXQuantum.5.020364Cc39R1
  doi: 10.1103/PhysRevX.13.041020
– ident: PRXQuantum.5.020364Cc36R1
  doi: 10.1103/PhysRevA.93.060302
SSID ssj0002513149
Score 2.2805195
Snippet We develop and demonstrate a trainable temporal postprocessor (TPP) harnessing a simple but versatile machine learning algorithm to provide optimal processing...
SourceID crossref
SourceType Enrichment Source
Index Database
Title Practical Trainable Temporal Postprocessor for Multistate Quantum Measurement
Volume 5
WOSCitedRecordID wos001258243000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2691-3399
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513149
  issn: 2691-3399
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2691-3399
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513149
  issn: 2691-3399
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa2C5W4oBZa8WiRD9wgS2wncXKkCNTLIoQWaW-R48RqpW12FRa0vfS3M34kDmiFyoFLFFmO5Xg-jcfjmfkQOg4FlUQpFoBxHAVRqnggRBgHkWRJUpQiYaU0ZBP8-jqdTrObwWDR5sI8znhdp6tVtnhXUUMbCFunzr5B3N2g0ADvIHR4gtjh-V-CtxWI9NJPmjY1amILUM0MN-_C5gbMGxNiaDJwTVqRDvCEHejPydj7Dfu2683tVOdg6i6dmv7l_KcCNsGT81HXLh6Uc63e_vX4G2sSAgOcH_Pm973XfkvP8d4L43fOCBrpoCmb4Wx1Fk0yEjBmOY9G1Zo2p3TjHrboelUe6pIS8Gvu50fxyN6a-p2rva1_saF1YYbmgBOy3A-Sx7kd5APaoDzOdBDg-J_3yoG1x4g5M3WzdqWqYJyzNZPpmTM9u2TyCW27AwU-t0D4jAZVvYM-msBeeb-Lxh0ccAcH3MIBP4MDBjhgDwfsJoF7cPiC7q4uJxc_A0ehEUiaRcug5IoWYaGkKFNKBBiHMiKarCxKBAdDRMZhqWKwWEiSSF16jhDJRZkVqWScUsG-omE9r6s9hAUpwfangkumOQm4SLOyIgUPZVgpGat9RNuVyKWrL69pTmb5K2LYR6fdRwtbXuW17gdv636ItjxIv6HhsnmovqNN-QgL2RwZ98uRkf8TGMd5eQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+Trainable+Temporal+Postprocessor+for+Multistate+Quantum+Measurement&rft.jtitle=PRX+quantum&rft.au=Khan%2C+Saeed+A.&rft.au=Kaufman%2C+Ryan&rft.au=Mesits%2C+Boris&rft.au=Hatridge%2C+Michael&rft.date=2024-06-21&rft.issn=2691-3399&rft.eissn=2691-3399&rft.volume=5&rft.issue=2&rft_id=info:doi/10.1103%2FPRXQuantum.5.020364&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PRXQuantum_5_020364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3399&client=summon