Practical Trainable Temporal Postprocessor for Multistate Quantum Measurement
We develop and demonstrate a trainable temporal postprocessor (TPP) harnessing a simple but versatile machine learning algorithm to provide optimal processing of quantum measurement data subject to arbitrary noise processes for the readout of an arbitrary number of quantum states. We demonstrate the...
Gespeichert in:
| Veröffentlicht in: | PRX quantum Jg. 5; H. 2 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
21.06.2024
|
| ISSN: | 2691-3399, 2691-3399 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We develop and demonstrate a trainable temporal postprocessor (TPP) harnessing a simple but versatile machine learning algorithm to provide optimal processing of quantum measurement data subject to arbitrary noise processes for the readout of an arbitrary number of quantum states. We demonstrate the TPP on the essential task of qubit state readout, which has historically relied on temporal processing via matched filters in spite of their applicability for only specific noise conditions. Our results show that the TPP can reliably outperform standard filtering approaches under complex readout conditions, such as high-power readout. Using simulations of quantum measurement noise sources, we show that this advantage relies on the TPP’s ability to learn optimal linear filters that account for general quantum noise correlations in data, such as those due to quantum jumps, or correlated noise added by a phase-preserving quantum amplifier. Furthermore, we derive an exact analytic form for the optimal TPP weights: this positions the TPP as a linearly scaling generalization of matched filtering, valid for an arbitrary number of states under the most general readout noise conditions, all while preserving a training complexity that is essentially negligible in comparison with that of training neural networks for processing temporal quantum measurement data. The TPP can be autonomously and reliably trained on measurement data and requires only linear operations, making it ideal for field-programmable gate array implementations in circuit QED for real-time processing of measurement data from general quantum systems. |
|---|---|
| AbstractList | We develop and demonstrate a trainable temporal postprocessor (TPP) harnessing a simple but versatile machine learning algorithm to provide optimal processing of quantum measurement data subject to arbitrary noise processes for the readout of an arbitrary number of quantum states. We demonstrate the TPP on the essential task of qubit state readout, which has historically relied on temporal processing via matched filters in spite of their applicability for only specific noise conditions. Our results show that the TPP can reliably outperform standard filtering approaches under complex readout conditions, such as high-power readout. Using simulations of quantum measurement noise sources, we show that this advantage relies on the TPP’s ability to learn optimal linear filters that account for general quantum noise correlations in data, such as those due to quantum jumps, or correlated noise added by a phase-preserving quantum amplifier. Furthermore, we derive an exact analytic form for the optimal TPP weights: this positions the TPP as a linearly scaling generalization of matched filtering, valid for an arbitrary number of states under the most general readout noise conditions, all while preserving a training complexity that is essentially negligible in comparison with that of training neural networks for processing temporal quantum measurement data. The TPP can be autonomously and reliably trained on measurement data and requires only linear operations, making it ideal for field-programmable gate array implementations in circuit QED for real-time processing of measurement data from general quantum systems. |
| ArticleNumber | 020364 |
| Author | Mesits, Boris Türeci, Hakan E. Kaufman, Ryan Khan, Saeed A. Hatridge, Michael |
| Author_xml | – sequence: 1 givenname: Saeed A. orcidid: 0000-0002-8047-4657 surname: Khan fullname: Khan, Saeed A. – sequence: 2 givenname: Ryan orcidid: 0000-0002-4467-1987 surname: Kaufman fullname: Kaufman, Ryan – sequence: 3 givenname: Boris orcidid: 0000-0001-5074-6853 surname: Mesits fullname: Mesits, Boris – sequence: 4 givenname: Michael orcidid: 0000-0002-0848-7867 surname: Hatridge fullname: Hatridge, Michael – sequence: 5 givenname: Hakan E. orcidid: 0000-0003-4210-3027 surname: Türeci fullname: Türeci, Hakan E. |
| BookMark | eNp9kM1KxDAQgIOs4LruE3jpC7TOJG26OcriH-xilRW8lWmaQqVtSpIefHsru6B48DDMMPDNz3fJFoMdDGPXCAkiiJvi9f1loiFMfZIlwEHI9IwtuVQYC6HU4ld9wdbefwAAz1BgqpZsXzjSodXURQdH7UBVZ6KD6Ufr5lZhfRid1cZ766Jmjv3UhdYHCiY6LY32hvzkTG-GcMXOG-q8WZ_yir3d3x22j_Hu-eFpe7uLNVdpiOu84RVUjaZ6w5FAoU4xFyhTSblSoDOomwxkjlJqpTKFqHOqVbXRIuecxIqp41ztrPfONKVu55taO4T5ia5EKL_VlD9qyqw8qplZ8YcdXduT-_yX-gJ9X24A |
| CitedBy_id | crossref_primary_10_1103_PhysRevApplied_24_014052 crossref_primary_10_1007_s42484_025_00261_9 |
| Cites_doi | 10.1103/PhysRevLett.132.100603 10.1016/j.neunet.2019.03.005 10.1063/1.5048199 10.1038/s41534-023-00689-6 10.1103/PhysRevApplied.18.034031 10.1103/PhysRevX.5.021025 10.1103/PhysRevX.11.041062 10.1109/TIT.1960.1057571 10.1002/qute.202100027 10.1103/PhysRevApplied.20.034027 10.1038/s41467-021-25801-2 10.1103/PhysRevApplied.5.011001 10.1103/PhysRevApplied.17.014024 10.1103/RevModPhys.93.025005 10.1103/PhysRevA.93.062310 10.1103/PhysRevApplied.20.054058 10.1063/1.5010300 10.1103/PhysRevA.76.012325 10.1103/PhysRevLett.132.090602 10.1103/PhysRevApplied.20.054008 10.1103/PhysRevApplied.15.064029 10.1103/PhysRevB.87.024510 10.1103/PRXQuantum.2.040313 10.1103/PhysRevApplied.8.054030 10.1109/ACCESS.2020.2976199 10.1016/j.crhy.2016.07.012 10.1038/s41467-021-22030-5 10.1088/2632-072X/ac24f3 10.1103/PhysRevB.92.224304 10.1103/PhysRevLett.94.123602 10.1103/PhysRevApplied.7.054020 10.1103/PhysRevApplied.15.064030 10.1103/PhysRevLett.120.024102 10.1103/PhysRevApplied.20.014045 10.1038/s41586-018-0195-y 10.1103/PhysRevB.101.134510 10.1103/PhysRevLett.127.100502 10.1103/PhysRevLett.117.190503 10.1103/PhysRevApplied.17.044016 10.1109/MSP.2012.2211477 10.1109/MMM.2020.2993476 10.1063/1.5120710 10.1103/PhysRevApplied.17.034064 10.1103/PRXQuantum.4.020312 10.1103/PhysRevX.7.011015 10.1103/PhysRevResearch.3.043228 10.1038/nphys1400 10.1103/PhysRevA.94.012347 10.1103/PhysRevB.101.134509 10.1103/PhysRevA.92.062119 10.1038/s42005-021-00556-w 10.1103/PhysRevX.13.041020 10.1103/PhysRevA.93.060302 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1103/PRXQuantum.5.020364 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2691-3399 |
| ExternalDocumentID | 10_1103_PRXQuantum_5_020364 |
| GroupedDBID | 3MX AAFWJ AAYXX AECSF AFGMR AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION EBS GROUPED_DOAJ M~E OK1 ROL |
| ID | FETCH-LOGICAL-c294t-d7f2b0bfcad821a091c41731646a7990c50df5067166c995911c7ad9b8c3722a3 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001258243000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2691-3399 |
| IngestDate | Sat Nov 29 05:13:43 EST 2025 Tue Nov 18 22:26:19 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c294t-d7f2b0bfcad821a091c41731646a7990c50df5067166c995911c7ad9b8c3722a3 |
| ORCID | 0000-0002-4467-1987 0000-0001-5074-6853 0000-0003-4210-3027 0000-0002-8047-4657 0000-0002-0848-7867 |
| OpenAccessLink | http://link.aps.org/pdf/10.1103/PRXQuantum.5.020364 |
| ParticipantIDs | crossref_citationtrail_10_1103_PRXQuantum_5_020364 crossref_primary_10_1103_PRXQuantum_5_020364 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-21 |
| PublicationDateYYYYMMDD | 2024-06-21 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | PRX quantum |
| PublicationYear | 2024 |
| References | PRXQuantum.5.020364Cc45R1 PRXQuantum.5.020364Cc24R1 PRXQuantum.5.020364Cc47R1 PRXQuantum.5.020364Cc41R1 PRXQuantum.5.020364Cc20R1 PRXQuantum.5.020364Cc43R1 PRXQuantum.5.020364Cc49R1 PRXQuantum.5.020364Cc6R1 PRXQuantum.5.020364Cc28R1 PRXQuantum.5.020364Cc8R1 PRXQuantum.5.020364Cc2R1 PRXQuantum.5.020364Cc4R1 PRXQuantum.5.020364Cc50R1 PRXQuantum.5.020364Cc34R1 PRXQuantum.5.020364Cc55R1 PRXQuantum.5.020364Cc36R1 PRXQuantum.5.020364Cc57R1 PRXQuantum.5.020364Cc13R1 PRXQuantum.5.020364Cc51R1 PRXQuantum.5.020364Cc11R1 PRXQuantum.5.020364Cc32R1 PRXQuantum.5.020364Cc19R1 PRXQuantum.5.020364Cc15R1 PRXQuantum.5.020364Cc38R1 PRXQuantum.5.020364Cc59R1 T. Hastie (PRXQuantum.5.020364Cc44R1) 2016 PRXQuantum.5.020364Cc60R1 PRXQuantum.5.020364Cc23R1 PRXQuantum.5.020364Cc25R1 PRXQuantum.5.020364Cc46R1 PRXQuantum.5.020364Cc40R1 PRXQuantum.5.020364Cc21R1 PRXQuantum.5.020364Cc42R1 PRXQuantum.5.020364Cc7R1 PRXQuantum.5.020364Cc27R1 PRXQuantum.5.020364Cc48R1 PRXQuantum.5.020364Cc9R1 PRXQuantum.5.020364Cc29R1 PRXQuantum.5.020364Cc3R1 PRXQuantum.5.020364Cc1R1 PRXQuantum.5.020364Cc10R1 PRXQuantum.5.020364Cc33R1 PRXQuantum.5.020364Cc56R1 PRXQuantum.5.020364Cc35R1 PRXQuantum.5.020364Cc58R1 PRXQuantum.5.020364Cc14R1 PRXQuantum.5.020364Cc52R1 PRXQuantum.5.020364Cc12R1 PRXQuantum.5.020364Cc31R1 PRXQuantum.5.020364Cc54R1 PRXQuantum.5.020364Cc16R1 PRXQuantum.5.020364Cc39R1 PRXQuantum.5.020364Cc18R1 PRXQuantum.5.020364Cc61R1 |
| References_xml | – ident: PRXQuantum.5.020364Cc25R1 doi: 10.1103/PhysRevLett.132.100603 – ident: PRXQuantum.5.020364Cc27R1 doi: 10.1016/j.neunet.2019.03.005 – ident: PRXQuantum.5.020364Cc31R1 doi: 10.1063/1.5048199 – ident: PRXQuantum.5.020364Cc54R1 doi: 10.1038/s41534-023-00689-6 – ident: PRXQuantum.5.020364Cc14R1 doi: 10.1103/PhysRevApplied.18.034031 – ident: PRXQuantum.5.020364Cc59R1 doi: 10.1103/PhysRevX.5.021025 – ident: PRXQuantum.5.020364Cc4R1 doi: 10.1103/PhysRevX.11.041062 – ident: PRXQuantum.5.020364Cc45R1 doi: 10.1109/TIT.1960.1057571 – ident: PRXQuantum.5.020364Cc8R1 doi: 10.1002/qute.202100027 – ident: PRXQuantum.5.020364Cc51R1 doi: 10.1103/PhysRevApplied.20.034027 – ident: PRXQuantum.5.020364Cc28R1 doi: 10.1038/s41467-021-25801-2 – ident: PRXQuantum.5.020364Cc58R1 doi: 10.1103/PhysRevApplied.5.011001 – ident: PRXQuantum.5.020364Cc20R1 doi: 10.1103/PhysRevApplied.17.014024 – ident: PRXQuantum.5.020364Cc42R1 doi: 10.1103/RevModPhys.93.025005 – ident: PRXQuantum.5.020364Cc46R1 doi: 10.1103/PhysRevA.93.062310 – ident: PRXQuantum.5.020364Cc52R1 doi: 10.1103/PhysRevApplied.20.054058 – ident: PRXQuantum.5.020364Cc32R1 doi: 10.1063/1.5010300 – volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction year: 2016 ident: PRXQuantum.5.020364Cc44R1 – ident: PRXQuantum.5.020364Cc21R1 doi: 10.1103/PhysRevA.76.012325 – ident: PRXQuantum.5.020364Cc15R1 doi: 10.1103/PhysRevLett.132.090602 – ident: PRXQuantum.5.020364Cc13R1 doi: 10.1103/PhysRevApplied.20.054008 – ident: PRXQuantum.5.020364Cc23R1 doi: 10.1103/PhysRevApplied.15.064029 – ident: PRXQuantum.5.020364Cc41R1 doi: 10.1103/PhysRevB.87.024510 – ident: PRXQuantum.5.020364Cc38R1 doi: 10.1103/PRXQuantum.2.040313 – ident: PRXQuantum.5.020364Cc49R1 doi: 10.1103/PhysRevApplied.8.054030 – ident: PRXQuantum.5.020364Cc40R1 doi: 10.1109/ACCESS.2020.2976199 – ident: PRXQuantum.5.020364Cc1R1 doi: 10.1016/j.crhy.2016.07.012 – ident: PRXQuantum.5.020364Cc3R1 doi: 10.1038/s41467-021-22030-5 – ident: PRXQuantum.5.020364Cc35R1 doi: 10.1088/2632-072X/ac24f3 – ident: PRXQuantum.5.020364Cc48R1 doi: 10.1103/PhysRevB.92.224304 – ident: PRXQuantum.5.020364Cc55R1 doi: 10.1103/PhysRevLett.94.123602 – ident: PRXQuantum.5.020364Cc18R1 doi: 10.1103/PhysRevApplied.7.054020 – ident: PRXQuantum.5.020364Cc16R1 doi: 10.1103/PhysRevApplied.15.064030 – ident: PRXQuantum.5.020364Cc33R1 doi: 10.1103/PhysRevLett.120.024102 – ident: PRXQuantum.5.020364Cc29R1 doi: 10.1103/PhysRevApplied.20.014045 – ident: PRXQuantum.5.020364Cc47R1 doi: 10.1038/s41586-018-0195-y – ident: PRXQuantum.5.020364Cc11R1 doi: 10.1103/PhysRevB.101.134510 – ident: PRXQuantum.5.020364Cc7R1 doi: 10.1103/PhysRevLett.127.100502 – ident: PRXQuantum.5.020364Cc9R1 doi: 10.1103/PhysRevLett.117.190503 – ident: PRXQuantum.5.020364Cc24R1 doi: 10.1103/PhysRevApplied.17.044016 – ident: PRXQuantum.5.020364Cc61R1 doi: 10.1109/MSP.2012.2211477 – ident: PRXQuantum.5.020364Cc2R1 doi: 10.1109/MMM.2020.2993476 – ident: PRXQuantum.5.020364Cc34R1 doi: 10.1063/1.5120710 – ident: PRXQuantum.5.020364Cc50R1 doi: 10.1103/PhysRevApplied.17.034064 – ident: PRXQuantum.5.020364Cc56R1 doi: 10.1103/PRXQuantum.4.020312 – ident: PRXQuantum.5.020364Cc60R1 doi: 10.1103/PhysRevX.7.011015 – ident: PRXQuantum.5.020364Cc12R1 doi: 10.1103/PhysRevResearch.3.043228 – ident: PRXQuantum.5.020364Cc43R1 doi: 10.1038/nphys1400 – ident: PRXQuantum.5.020364Cc57R1 doi: 10.1103/PhysRevA.94.012347 – ident: PRXQuantum.5.020364Cc10R1 doi: 10.1103/PhysRevB.101.134509 – ident: PRXQuantum.5.020364Cc19R1 doi: 10.1103/PhysRevA.92.062119 – ident: PRXQuantum.5.020364Cc6R1 doi: 10.1038/s42005-021-00556-w – ident: PRXQuantum.5.020364Cc39R1 doi: 10.1103/PhysRevX.13.041020 – ident: PRXQuantum.5.020364Cc36R1 doi: 10.1103/PhysRevA.93.060302 |
| SSID | ssj0002513149 |
| Score | 2.2805195 |
| Snippet | We develop and demonstrate a trainable temporal postprocessor (TPP) harnessing a simple but versatile machine learning algorithm to provide optimal processing... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| Title | Practical Trainable Temporal Postprocessor for Multistate Quantum Measurement |
| Volume | 5 |
| WOSCitedRecordID | wos001258243000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2691-3399 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513149 issn: 2691-3399 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2691-3399 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513149 issn: 2691-3399 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa2C5W4oBZa8WiRD9wgS2wncXKkCNTLIoQWaW-R48RqpW12FRa0vfS3M34kDmiFyoFLFFmO5Xg-jcfjmfkQOg4FlUQpFoBxHAVRqnggRBgHkWRJUpQiYaU0ZBP8-jqdTrObwWDR5sI8znhdp6tVtnhXUUMbCFunzr5B3N2g0ADvIHR4gtjh-V-CtxWI9NJPmjY1amILUM0MN-_C5gbMGxNiaDJwTVqRDvCEHejPydj7Dfu2683tVOdg6i6dmv7l_KcCNsGT81HXLh6Uc63e_vX4G2sSAgOcH_Pm973XfkvP8d4L43fOCBrpoCmb4Wx1Fk0yEjBmOY9G1Zo2p3TjHrboelUe6pIS8Gvu50fxyN6a-p2rva1_saF1YYbmgBOy3A-Sx7kd5APaoDzOdBDg-J_3yoG1x4g5M3WzdqWqYJyzNZPpmTM9u2TyCW27AwU-t0D4jAZVvYM-msBeeb-Lxh0ccAcH3MIBP4MDBjhgDwfsJoF7cPiC7q4uJxc_A0ehEUiaRcug5IoWYaGkKFNKBBiHMiKarCxKBAdDRMZhqWKwWEiSSF16jhDJRZkVqWScUsG-omE9r6s9hAUpwfangkumOQm4SLOyIgUPZVgpGat9RNuVyKWrL69pTmb5K2LYR6fdRwtbXuW17gdv636ItjxIv6HhsnmovqNN-QgL2RwZ98uRkf8TGMd5eQ |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+Trainable+Temporal+Postprocessor+for+Multistate+Quantum+Measurement&rft.jtitle=PRX+quantum&rft.au=Khan%2C+Saeed+A.&rft.au=Kaufman%2C+Ryan&rft.au=Mesits%2C+Boris&rft.au=Hatridge%2C+Michael&rft.date=2024-06-21&rft.issn=2691-3399&rft.eissn=2691-3399&rft.volume=5&rft.issue=2&rft_id=info:doi/10.1103%2FPRXQuantum.5.020364&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PRXQuantum_5_020364 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3399&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3399&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3399&client=summon |