Realizability of tropical canonical divisors
We use recent results by Bainbridge–Chen–Gendron–Grushevsky–Möller on compactifications of strata of abelian differentials to give a comprehensive solution to the realizability problem for effective tropical canonical divisors in equicharacteristic zero. Given a pair $(\Gamma, D)$ consisting of a st...
Uloženo v:
| Vydáno v: | Journal of the European Mathematical Society : JEMS Ročník 23; číslo 1; s. 185 - 217 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Zuerich, Switzerland
European Mathematical Society Publishing House
01.01.2021
|
| Témata: | |
| ISSN: | 1435-9855, 1435-9863 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We use recent results by Bainbridge–Chen–Gendron–Grushevsky–Möller on compactifications of strata of abelian differentials to give a comprehensive solution to the realizability problem for effective tropical canonical divisors in equicharacteristic zero. Given a pair $(\Gamma, D)$ consisting of a stable tropical curve $\Gamma$ and a divisor $D$ in the canonical linear system on $\Gamma$, we give a purely combinatorial condition to decide whether there is a smooth curve $X$ over a non-Archimedean field whose stable reduction has $\Gamma$ as its dual tropical curve together with an effective canonical divisor $K_X$ that specializes to $D$. |
|---|---|
| ISSN: | 1435-9855 1435-9863 |
| DOI: | 10.4171/JEMS/1009 |