Toward Robust and Accurate Myoelectric Controller Design Based on Multiobjective Optimization Using Evolutionary Computation
Myoelectric pattern recognition holds significant importance in designing control strategies for a range of applications, including upper limb prostheses and biorobotic hand movement systems. It serves as a crucial aspect in formulating effective control strategies for these applications. This study...
Saved in:
| Published in: | IEEE sensors journal Vol. 24; no. 5; pp. 6418 - 6429 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Myoelectric pattern recognition holds significant importance in designing control strategies for a range of applications, including upper limb prostheses and biorobotic hand movement systems. It serves as a crucial aspect in formulating effective control strategies for these applications. This study presents a novel method for creating a robust and accurate electromyogram (EMG)-based controller. The approach involves leveraging a kernelized support vector machine (SVM) classifier to interpret surface electromyography (sEMG) signals and accurately deduce muscle movements. The primary objective in designing the classifier is to minimize false movements specifically during the "rest" position of the controller, thereby optimizing the overall performance of the EMG-based controller (EBC). To achieve this, the training algorithm of the supervised learning system is formulated as a problem of constrained multiobjective optimization. For tuning the hyperparameters of SVM, we employ the nondominated sorting genetic algorithm II (NSGA-II), which is an elitist multiobjective evolutionary algorithm (MOEA). Experimental results are presented using a dataset comprising sEMG signals obtained from 11 subjects at five different positions of the upper limb. Furthermore, the performance of the trained models based on the two-objective metrics, namely classification accuracy and false-negative have been evaluated on two different test sets to examine the generalization capability of the proposed training approach while implementing limb-position invariant EMG classification. The results presented clearly demonstrate that the proposed approach offers increased flexibility to the designer in selecting classifier parameters, enabling them to optimize the robustness and accuracy of the EBC more effectively. |
|---|---|
| AbstractList | Myoelectric pattern recognition holds significant importance in designing control strategies for a range of applications, including upper limb prostheses and biorobotic hand movement systems. It serves as a crucial aspect in formulating effective control strategies for these applications. This study presents a novel method for creating a robust and accurate electromyogram (EMG)-based controller. The approach involves leveraging a kernelized support vector machine (SVM) classifier to interpret surface electromyography (sEMG) signals and accurately deduce muscle movements. The primary objective in designing the classifier is to minimize false movements specifically during the "rest" position of the controller, thereby optimizing the overall performance of the EMG-based controller (EBC). To achieve this, the training algorithm of the supervised learning system is formulated as a problem of constrained multiobjective optimization. For tuning the hyperparameters of SVM, we employ the nondominated sorting genetic algorithm II (NSGA-II), which is an elitist multiobjective evolutionary algorithm (MOEA). Experimental results are presented using a dataset comprising sEMG signals obtained from 11 subjects at five different positions of the upper limb. Furthermore, the performance of the trained models based on the two-objective metrics, namely classification accuracy and false-negative have been evaluated on two different test sets to examine the generalization capability of the proposed training approach while implementing limb-position invariant EMG classification. The results presented clearly demonstrate that the proposed approach offers increased flexibility to the designer in selecting classifier parameters, enabling them to optimize the robustness and accuracy of the EBC more effectively. |
| Author | Poddar, Soumyajit Shaikh, Ahmed Aqeel Samui, Suman Mukhopadhyay, Anand Kumar |
| Author_xml | – sequence: 1 givenname: Ahmed Aqeel orcidid: 0009-0001-9005-3979 surname: Shaikh fullname: Shaikh, Ahmed Aqeel email: ahm14299@gmail.com organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 2 givenname: Anand Kumar orcidid: 0000-0002-6535-1085 surname: Mukhopadhyay fullname: Mukhopadhyay, Anand Kumar email: anand.mukhopadhyay@gmail.com organization: Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India – sequence: 3 givenname: Soumyajit orcidid: 0000-0002-3476-2199 surname: Poddar fullname: Poddar, Soumyajit email: poddar18@gmail.com organization: Department of Electronics and Communication Engineering, Indian Institute Information Technology Guwahati, Guwahati, India – sequence: 4 givenname: Suman orcidid: 0000-0002-3139-9646 surname: Samui fullname: Samui, Suman email: ssamui.ece@nitdgp.ac.in organization: Department of Electronics and Communication Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, India |
| BookMark | eNp9UctKAzEUDVLBVv0AwUXA9dS8hiTLWuuLquAD3A1pJlNSpklNMpWKH--M7UJcuLqvc-7j3AHoOe8MACcYDTFG8vzuefIwJIjQIaWMSyb3QB_nucgwZ6LX-RRljPK3AzCIcYEQljznffD14j9UKOGTnzUxQeVKONK6CSoZeL_xpjY6Bavh2LsUfF2bAC9NtHMHL1Q0JfQO3jd1sn62aJF2beDjKtml_VRtzsHXaN0cTta-brpYhU3bablq0k_5COxXqo7meGcPwevV5GV8k00fr2_Ho2mmiWQp0znRUpWEEZljVCJaVcQwxITSSJS0QvlMC41nOWFUCyqw4qVEinNmykroih6Cs23fVfDvjYmpWPgmuHZkQSQlOWdSyBbFtygdfIzBVIW22z1TULYuMCo6qYtO6qKTuthJ3TLxH-Yq2GV77L-c0y3HGmN-4angpH3WN6_hjvU |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1109_JSEN_2025_3570236 crossref_primary_10_1145_3742471 crossref_primary_10_1007_s42452_025_07504_1 crossref_primary_10_1007_s13246_024_01454_5 crossref_primary_10_32604_cmc_2024_053075 |
| Cites_doi | 10.1016/j.bspc.2019.101669 10.1109/TEVC.2017.2688863 10.1016/j.patrec.2019.07.021 10.1016/j.conengprac.2014.03.003 10.1109/TEVC.2012.2185845 10.3390/s19204596 10.1109/BIOCAS.2017.8325152 10.1109/iSES50453.2020.00029 10.1017/CBO9780511804441 10.1016/j.asoc.2018.10.031 10.1016/j.bspc.2007.07.009 10.1007/978-3-319-70742-6_16 10.1007/3-540-33019-4_19 10.1109/TAI.2021.3066565 10.1109/TNSRE.2015.2445634 10.1109/SSCI.2016.7850064 10.1007/s11062-013-9335-z 10.1109/TBME.2013.2238939 10.1007/978-0-387-45528-0 10.1109/iSES50453.2020.00030 10.5772/56174 10.3390/computation7010012 10.1109/IWASI.2015.7184964 10.1109/4235.996017 10.1109/EMBC.2013.6610488 10.1007/s12652-021-03351-1 10.1007/3-540-33019-4_13 10.1007/978-3-031-45170-6_70 10.1109/ISAP.2005.1599245 10.1007/978-1-4615-5563-6 10.1109/LASCAS45839.2020.9069040 10.1016/j.eswa.2017.11.057 10.1109/JETCAS.2018.2836319 10.1109/MMM.2011.942013 10.1109/ICSENS.2018.8589757 10.1109/TIPTEKNO.2019.8895122 10.1023/A:1022628612489 10.1109/LRA.2021.3056357 10.1109/EMBC44109.2020.9175279 10.1016/j.neunet.2014.03.010 10.1016/j.robot.2015.10.001 10.1145/3460418.3479287 10.1007/978-3-030-38930-7_7 10.1088/1741-2552/14/1/011001 10.1109/TVLSI.2021.3056243 10.1109/JSEN.2020.3042510 10.1007/s00158-002-0276-1 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2023.3347949 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 6429 |
| ExternalDocumentID | 10_1109_JSEN_2023_3347949 10387215 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Human Resource Development (MHRD), Government of India |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c294t-c52c9ad2429510d03ff2e4048ac08d3f05bc8c1b5243c8381a7d90a774edf8cf3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001280080300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 09:58:53 EDT 2025 Sat Nov 29 06:39:51 EST 2025 Tue Nov 18 22:41:19 EST 2025 Wed Aug 27 02:08:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-c52c9ad2429510d03ff2e4048ac08d3f05bc8c1b5243c8381a7d90a774edf8cf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3476-2199 0009-0001-9005-3979 0000-0002-3139-9646 0000-0002-6535-1085 |
| PQID | 2932574989 |
| PQPubID | 75733 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2932574989 crossref_citationtrail_10_1109_JSEN_2023_3347949 crossref_primary_10_1109_JSEN_2023_3347949 ieee_primary_10387215 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Deb (ref45) 1995; 9 ref12 ref15 ref14 ref11 ref10 Warden (ref49) 2020 ref17 ref16 ref18 ref51 ref50 Joshi (ref2) 2009; 10 ref46 ref48 ref42 ref41 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 Géron (ref19) 2019 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Lalwani (ref47) 2013; 2 Jin (ref52) 2006; 16 |
| References_xml | – ident: ref24 doi: 10.1016/j.bspc.2019.101669 – ident: ref48 doi: 10.1109/TEVC.2017.2688863 – ident: ref39 doi: 10.1016/j.patrec.2019.07.021 – ident: ref7 doi: 10.1016/j.conengprac.2014.03.003 – ident: ref28 doi: 10.1109/TEVC.2012.2185845 – ident: ref9 doi: 10.3390/s19204596 – ident: ref14 doi: 10.1109/BIOCAS.2017.8325152 – ident: ref37 doi: 10.1109/iSES50453.2020.00029 – ident: ref26 doi: 10.1017/CBO9780511804441 – ident: ref40 doi: 10.1016/j.asoc.2018.10.031 – volume: 10 start-page: 228 year: 2009 ident: ref2 article-title: Trends in EMG based prosthetic hand development: A review publication-title: Indian J. Biomech. – ident: ref4 doi: 10.1016/j.bspc.2007.07.009 – ident: ref30 doi: 10.1007/978-3-319-70742-6_16 – ident: ref51 doi: 10.1007/3-540-33019-4_19 – ident: ref12 doi: 10.1109/TAI.2021.3066565 – ident: ref23 doi: 10.1109/TNSRE.2015.2445634 – ident: ref20 doi: 10.1109/SSCI.2016.7850064 – ident: ref33 doi: 10.1007/s11062-013-9335-z – ident: ref18 doi: 10.1109/TBME.2013.2238939 – ident: ref25 doi: 10.1007/978-0-387-45528-0 – ident: ref35 doi: 10.1109/iSES50453.2020.00030 – ident: ref8 doi: 10.5772/56174 – volume-title: Hands-on Machine Learning With Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems year: 2019 ident: ref19 – ident: ref32 doi: 10.3390/computation7010012 – ident: ref13 doi: 10.1109/IWASI.2015.7184964 – ident: ref21 doi: 10.1109/4235.996017 – ident: ref34 doi: 10.1109/EMBC.2013.6610488 – ident: ref6 doi: 10.1007/s12652-021-03351-1 – volume: 16 volume-title: Multi-Objective Machine Learning year: 2006 ident: ref52 doi: 10.1007/3-540-33019-4_13 – ident: ref36 doi: 10.1007/978-3-031-45170-6_70 – volume-title: TinyML: Machine Learning With Tensorflow Lite on Arduino and Ultra-Low-Power Microcontrollers year: 2020 ident: ref49 – ident: ref41 doi: 10.1109/ISAP.2005.1599245 – ident: ref43 doi: 10.1007/978-1-4615-5563-6 – ident: ref16 doi: 10.1109/LASCAS45839.2020.9069040 – ident: ref46 doi: 10.1016/j.eswa.2017.11.057 – ident: ref27 doi: 10.1109/JETCAS.2018.2836319 – ident: ref44 doi: 10.1109/MMM.2011.942013 – ident: ref17 doi: 10.1109/ICSENS.2018.8589757 – ident: ref29 doi: 10.1109/TIPTEKNO.2019.8895122 – ident: ref42 doi: 10.1023/A:1022628612489 – ident: ref11 doi: 10.1109/LRA.2021.3056357 – ident: ref38 doi: 10.1109/EMBC44109.2020.9175279 – ident: ref3 doi: 10.1016/j.neunet.2014.03.010 – volume: 9 start-page: 115 year: 1995 ident: ref45 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst. – ident: ref1 doi: 10.1016/j.robot.2015.10.001 – ident: ref50 doi: 10.1145/3460418.3479287 – ident: ref10 doi: 10.1007/978-3-030-38930-7_7 – ident: ref5 doi: 10.1088/1741-2552/14/1/011001 – volume: 2 start-page: 39 issue: 1 year: 2013 ident: ref47 article-title: A comprehensive survey: Applications of multi-objective particle swarm optimization (MOPSO) algorithm publication-title: Trans. Combinatorics – ident: ref15 doi: 10.1109/TVLSI.2021.3056243 – ident: ref31 doi: 10.1109/JSEN.2020.3042510 – ident: ref22 doi: 10.1007/s00158-002-0276-1 |
| SSID | ssj0019757 |
| Score | 2.4213076 |
| Snippet | Myoelectric pattern recognition holds significant importance in designing control strategies for a range of applications, including upper limb prostheses and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6418 |
| SubjectTerms | Accuracy Classification Classifiers Control systems design Controllers Design optimization Electromyogram (EMG) Electromyography Evolutionary algorithms Evolutionary computation evolutionary computation (EC) Genetic algorithms Machine learning machine learning (ML) multiobjective optimization Multiple objective analysis myoelectric control Myoelectricity Optimization Pattern recognition Prostheses Robust control Sensors Sorting algorithms Supervised learning Support vector machines surface electromyography (sEMG) signal classification System effectiveness Training |
| Title | Toward Robust and Accurate Myoelectric Controller Design Based on Multiobjective Optimization Using Evolutionary Computation |
| URI | https://ieeexplore.ieee.org/document/10387215 https://www.proquest.com/docview/2932574989 |
| Volume | 24 |
| WOSCitedRecordID | wos001280080300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFD6oFNQHbdXSrVry0KfCrJlNZjN59LIiRVexCvs25DZosTOyF2GhP96Ti7JQLPgWyIWBLznnZHLO9wF87zOHQYDimRaMZVxrtINa51mRC1NIaYXQQbXkXAyH5Wgkr1KxeqiFcc6F5DPX9c3wlm9bM_O_yg48mTfeWIplWBaiH4u1Xp8MpAi0nniCacaZGKUnzJzKg5-_BsOu1wnvMl846XkzF5xQUFX5xxQH_3K6-c4v-wgbKZAkhxH5T7Dkmi1YX6AX3ILVpHB-N9-GvzchP5Zct3o2mRLVWHJozMwTRZCLeRvVcO4NOY6p6w9uTE5Ccgc5Qj9nSduQUKvb6t_RRJJLNDZ_UhUnCZkHZPCUNrIaz0nUiwjdO3B7Org5PsuS8kJmepJPM1P0jFQW3bcPwCxldd1zHA-7MrS0rKaFNqXJddHjzJTo9JWwkioMJZ2tS1Ozz7DStI37AkTSGk0ARiEce5WlSltppSyEljk2-h2gL1BUJtGSe3WMhypcT6isPHqVR69K6HXgx-uUx8jJ8b_BOx6uhYERqQ7svQBepWM7qTD2QRPGZSm_vjFtF9ZwdR6z0PZgZTqeuX34YJ6m95Pxt7AjnwHgud8- |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD5oFdo-VK0trm01Dz4Js81MMs3ksbZbqm5X0RX2bchtsFJnyl4KC_54Ty4tC8WCb4EkZOBLzjmZnPN9AO-OmMMgQPFMC8YyrjXaQa3zrMyFKaW0QuigWjIUo1E1mcivqVg91MI450Lymev7ZnjLt51Z-F9lh57MG28s5WN4UnJe0FiudfdoIEUg9sQzTDPOxCQ9YuZUHn76Phj1vVJ4n_nSSc-cueKGgq7KPWMcPMzZs__8tuewlUJJchyxfwGPXLsNmysEg9uwnjTOfy5fwp9xyJAl3zq9mM2Jai05NmbhqSLIxbKLejiXhpzE5PUrNyWnIb2DfEBPZ0nXklCt2-lf0UiSL2hufqc6ThJyD8jgJm1lNV2SqBgRunfgx9lgfHKeJe2FzBSSzzNTFkYqiw7ch2CWsqYpHMfjrgytLGtoqU1lcl0WnJkK3b4SVlKFwaSzTWUatgtrbde6V0AkbdAIYBzCsVdZqrSVVspSaJlj46gH9BaK2iRicq-PcVWHCwqVtUev9ujVCb0evL-bch1ZOR4avOPhWhkYkerB_i3gdTq4sxqjHzRiXFby9T-mvYX18_HFsB5-HH3egw1cicectH1Ym08X7gCempv55Wz6JuzOv6Ff4oU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Robust+and+Accurate+Myoelectric+Controller+Design+Based+on+Multiobjective+Optimization+Using+Evolutionary+Computation&rft.jtitle=IEEE+sensors+journal&rft.au=Ahmed+Aqeel+Shaikh&rft.au=Mukhopadhyay%2C+Anand+Kumar&rft.au=Poddar%2C+Soumyajit&rft.au=Samui%2C+Suman&rft.date=2024-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=5&rft.spage=6418&rft_id=info:doi/10.1109%2FJSEN.2023.3347949&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |