Toward Robust and Accurate Myoelectric Controller Design Based on Multiobjective Optimization Using Evolutionary Computation

Myoelectric pattern recognition holds significant importance in designing control strategies for a range of applications, including upper limb prostheses and biorobotic hand movement systems. It serves as a crucial aspect in formulating effective control strategies for these applications. This study...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal Vol. 24; no. 5; pp. 6418 - 6429
Main Authors: Shaikh, Ahmed Aqeel, Mukhopadhyay, Anand Kumar, Poddar, Soumyajit, Samui, Suman
Format: Journal Article
Language:English
Published: New York IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1530-437X, 1558-1748
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Myoelectric pattern recognition holds significant importance in designing control strategies for a range of applications, including upper limb prostheses and biorobotic hand movement systems. It serves as a crucial aspect in formulating effective control strategies for these applications. This study presents a novel method for creating a robust and accurate electromyogram (EMG)-based controller. The approach involves leveraging a kernelized support vector machine (SVM) classifier to interpret surface electromyography (sEMG) signals and accurately deduce muscle movements. The primary objective in designing the classifier is to minimize false movements specifically during the "rest" position of the controller, thereby optimizing the overall performance of the EMG-based controller (EBC). To achieve this, the training algorithm of the supervised learning system is formulated as a problem of constrained multiobjective optimization. For tuning the hyperparameters of SVM, we employ the nondominated sorting genetic algorithm II (NSGA-II), which is an elitist multiobjective evolutionary algorithm (MOEA). Experimental results are presented using a dataset comprising sEMG signals obtained from 11 subjects at five different positions of the upper limb. Furthermore, the performance of the trained models based on the two-objective metrics, namely classification accuracy and false-negative have been evaluated on two different test sets to examine the generalization capability of the proposed training approach while implementing limb-position invariant EMG classification. The results presented clearly demonstrate that the proposed approach offers increased flexibility to the designer in selecting classifier parameters, enabling them to optimize the robustness and accuracy of the EBC more effectively.
AbstractList Myoelectric pattern recognition holds significant importance in designing control strategies for a range of applications, including upper limb prostheses and biorobotic hand movement systems. It serves as a crucial aspect in formulating effective control strategies for these applications. This study presents a novel method for creating a robust and accurate electromyogram (EMG)-based controller. The approach involves leveraging a kernelized support vector machine (SVM) classifier to interpret surface electromyography (sEMG) signals and accurately deduce muscle movements. The primary objective in designing the classifier is to minimize false movements specifically during the "rest" position of the controller, thereby optimizing the overall performance of the EMG-based controller (EBC). To achieve this, the training algorithm of the supervised learning system is formulated as a problem of constrained multiobjective optimization. For tuning the hyperparameters of SVM, we employ the nondominated sorting genetic algorithm II (NSGA-II), which is an elitist multiobjective evolutionary algorithm (MOEA). Experimental results are presented using a dataset comprising sEMG signals obtained from 11 subjects at five different positions of the upper limb. Furthermore, the performance of the trained models based on the two-objective metrics, namely classification accuracy and false-negative have been evaluated on two different test sets to examine the generalization capability of the proposed training approach while implementing limb-position invariant EMG classification. The results presented clearly demonstrate that the proposed approach offers increased flexibility to the designer in selecting classifier parameters, enabling them to optimize the robustness and accuracy of the EBC more effectively.
Author Poddar, Soumyajit
Shaikh, Ahmed Aqeel
Samui, Suman
Mukhopadhyay, Anand Kumar
Author_xml – sequence: 1
  givenname: Ahmed Aqeel
  orcidid: 0009-0001-9005-3979
  surname: Shaikh
  fullname: Shaikh, Ahmed Aqeel
  email: ahm14299@gmail.com
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 2
  givenname: Anand Kumar
  orcidid: 0000-0002-6535-1085
  surname: Mukhopadhyay
  fullname: Mukhopadhyay, Anand Kumar
  email: anand.mukhopadhyay@gmail.com
  organization: Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
– sequence: 3
  givenname: Soumyajit
  orcidid: 0000-0002-3476-2199
  surname: Poddar
  fullname: Poddar, Soumyajit
  email: poddar18@gmail.com
  organization: Department of Electronics and Communication Engineering, Indian Institute Information Technology Guwahati, Guwahati, India
– sequence: 4
  givenname: Suman
  orcidid: 0000-0002-3139-9646
  surname: Samui
  fullname: Samui, Suman
  email: ssamui.ece@nitdgp.ac.in
  organization: Department of Electronics and Communication Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, India
BookMark eNp9UctKAzEUDVLBVv0AwUXA9dS8hiTLWuuLquAD3A1pJlNSpklNMpWKH--M7UJcuLqvc-7j3AHoOe8MACcYDTFG8vzuefIwJIjQIaWMSyb3QB_nucgwZ6LX-RRljPK3AzCIcYEQljznffD14j9UKOGTnzUxQeVKONK6CSoZeL_xpjY6Bavh2LsUfF2bAC9NtHMHL1Q0JfQO3jd1sn62aJF2beDjKtml_VRtzsHXaN0cTta-brpYhU3bablq0k_5COxXqo7meGcPwevV5GV8k00fr2_Ho2mmiWQp0znRUpWEEZljVCJaVcQwxITSSJS0QvlMC41nOWFUCyqw4qVEinNmykroih6Cs23fVfDvjYmpWPgmuHZkQSQlOWdSyBbFtygdfIzBVIW22z1TULYuMCo6qYtO6qKTuthJ3TLxH-Yq2GV77L-c0y3HGmN-4angpH3WN6_hjvU
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_JSEN_2025_3570236
crossref_primary_10_1145_3742471
crossref_primary_10_1007_s42452_025_07504_1
crossref_primary_10_1007_s13246_024_01454_5
crossref_primary_10_32604_cmc_2024_053075
Cites_doi 10.1016/j.bspc.2019.101669
10.1109/TEVC.2017.2688863
10.1016/j.patrec.2019.07.021
10.1016/j.conengprac.2014.03.003
10.1109/TEVC.2012.2185845
10.3390/s19204596
10.1109/BIOCAS.2017.8325152
10.1109/iSES50453.2020.00029
10.1017/CBO9780511804441
10.1016/j.asoc.2018.10.031
10.1016/j.bspc.2007.07.009
10.1007/978-3-319-70742-6_16
10.1007/3-540-33019-4_19
10.1109/TAI.2021.3066565
10.1109/TNSRE.2015.2445634
10.1109/SSCI.2016.7850064
10.1007/s11062-013-9335-z
10.1109/TBME.2013.2238939
10.1007/978-0-387-45528-0
10.1109/iSES50453.2020.00030
10.5772/56174
10.3390/computation7010012
10.1109/IWASI.2015.7184964
10.1109/4235.996017
10.1109/EMBC.2013.6610488
10.1007/s12652-021-03351-1
10.1007/3-540-33019-4_13
10.1007/978-3-031-45170-6_70
10.1109/ISAP.2005.1599245
10.1007/978-1-4615-5563-6
10.1109/LASCAS45839.2020.9069040
10.1016/j.eswa.2017.11.057
10.1109/JETCAS.2018.2836319
10.1109/MMM.2011.942013
10.1109/ICSENS.2018.8589757
10.1109/TIPTEKNO.2019.8895122
10.1023/A:1022628612489
10.1109/LRA.2021.3056357
10.1109/EMBC44109.2020.9175279
10.1016/j.neunet.2014.03.010
10.1016/j.robot.2015.10.001
10.1145/3460418.3479287
10.1007/978-3-030-38930-7_7
10.1088/1741-2552/14/1/011001
10.1109/TVLSI.2021.3056243
10.1109/JSEN.2020.3042510
10.1007/s00158-002-0276-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2023.3347949
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 6429
ExternalDocumentID 10_1109_JSEN_2023_3347949
10387215
Genre orig-research
GrantInformation_xml – fundername: Ministry of Human Resource Development (MHRD), Government of India
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-c52c9ad2429510d03ff2e4048ac08d3f05bc8c1b5243c8381a7d90a774edf8cf3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001280080300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 09:58:53 EDT 2025
Sat Nov 29 06:39:51 EST 2025
Tue Nov 18 22:41:19 EST 2025
Wed Aug 27 02:08:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-c52c9ad2429510d03ff2e4048ac08d3f05bc8c1b5243c8381a7d90a774edf8cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3476-2199
0009-0001-9005-3979
0000-0002-3139-9646
0000-0002-6535-1085
PQID 2932574989
PQPubID 75733
PageCount 12
ParticipantIDs proquest_journals_2932574989
crossref_citationtrail_10_1109_JSEN_2023_3347949
crossref_primary_10_1109_JSEN_2023_3347949
ieee_primary_10387215
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Deb (ref45) 1995; 9
ref12
ref15
ref14
ref11
ref10
Warden (ref49) 2020
ref17
ref16
ref18
ref51
ref50
Joshi (ref2) 2009; 10
ref46
ref48
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
Géron (ref19) 2019
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Lalwani (ref47) 2013; 2
Jin (ref52) 2006; 16
References_xml – ident: ref24
  doi: 10.1016/j.bspc.2019.101669
– ident: ref48
  doi: 10.1109/TEVC.2017.2688863
– ident: ref39
  doi: 10.1016/j.patrec.2019.07.021
– ident: ref7
  doi: 10.1016/j.conengprac.2014.03.003
– ident: ref28
  doi: 10.1109/TEVC.2012.2185845
– ident: ref9
  doi: 10.3390/s19204596
– ident: ref14
  doi: 10.1109/BIOCAS.2017.8325152
– ident: ref37
  doi: 10.1109/iSES50453.2020.00029
– ident: ref26
  doi: 10.1017/CBO9780511804441
– ident: ref40
  doi: 10.1016/j.asoc.2018.10.031
– volume: 10
  start-page: 228
  year: 2009
  ident: ref2
  article-title: Trends in EMG based prosthetic hand development: A review
  publication-title: Indian J. Biomech.
– ident: ref4
  doi: 10.1016/j.bspc.2007.07.009
– ident: ref30
  doi: 10.1007/978-3-319-70742-6_16
– ident: ref51
  doi: 10.1007/3-540-33019-4_19
– ident: ref12
  doi: 10.1109/TAI.2021.3066565
– ident: ref23
  doi: 10.1109/TNSRE.2015.2445634
– ident: ref20
  doi: 10.1109/SSCI.2016.7850064
– ident: ref33
  doi: 10.1007/s11062-013-9335-z
– ident: ref18
  doi: 10.1109/TBME.2013.2238939
– ident: ref25
  doi: 10.1007/978-0-387-45528-0
– ident: ref35
  doi: 10.1109/iSES50453.2020.00030
– ident: ref8
  doi: 10.5772/56174
– volume-title: Hands-on Machine Learning With Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
  year: 2019
  ident: ref19
– ident: ref32
  doi: 10.3390/computation7010012
– ident: ref13
  doi: 10.1109/IWASI.2015.7184964
– ident: ref21
  doi: 10.1109/4235.996017
– ident: ref34
  doi: 10.1109/EMBC.2013.6610488
– ident: ref6
  doi: 10.1007/s12652-021-03351-1
– volume: 16
  volume-title: Multi-Objective Machine Learning
  year: 2006
  ident: ref52
  doi: 10.1007/3-540-33019-4_13
– ident: ref36
  doi: 10.1007/978-3-031-45170-6_70
– volume-title: TinyML: Machine Learning With Tensorflow Lite on Arduino and Ultra-Low-Power Microcontrollers
  year: 2020
  ident: ref49
– ident: ref41
  doi: 10.1109/ISAP.2005.1599245
– ident: ref43
  doi: 10.1007/978-1-4615-5563-6
– ident: ref16
  doi: 10.1109/LASCAS45839.2020.9069040
– ident: ref46
  doi: 10.1016/j.eswa.2017.11.057
– ident: ref27
  doi: 10.1109/JETCAS.2018.2836319
– ident: ref44
  doi: 10.1109/MMM.2011.942013
– ident: ref17
  doi: 10.1109/ICSENS.2018.8589757
– ident: ref29
  doi: 10.1109/TIPTEKNO.2019.8895122
– ident: ref42
  doi: 10.1023/A:1022628612489
– ident: ref11
  doi: 10.1109/LRA.2021.3056357
– ident: ref38
  doi: 10.1109/EMBC44109.2020.9175279
– ident: ref3
  doi: 10.1016/j.neunet.2014.03.010
– volume: 9
  start-page: 115
  year: 1995
  ident: ref45
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– ident: ref1
  doi: 10.1016/j.robot.2015.10.001
– ident: ref50
  doi: 10.1145/3460418.3479287
– ident: ref10
  doi: 10.1007/978-3-030-38930-7_7
– ident: ref5
  doi: 10.1088/1741-2552/14/1/011001
– volume: 2
  start-page: 39
  issue: 1
  year: 2013
  ident: ref47
  article-title: A comprehensive survey: Applications of multi-objective particle swarm optimization (MOPSO) algorithm
  publication-title: Trans. Combinatorics
– ident: ref15
  doi: 10.1109/TVLSI.2021.3056243
– ident: ref31
  doi: 10.1109/JSEN.2020.3042510
– ident: ref22
  doi: 10.1007/s00158-002-0276-1
SSID ssj0019757
Score 2.4213076
Snippet Myoelectric pattern recognition holds significant importance in designing control strategies for a range of applications, including upper limb prostheses and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6418
SubjectTerms Accuracy
Classification
Classifiers
Control systems design
Controllers
Design optimization
Electromyogram (EMG)
Electromyography
Evolutionary algorithms
Evolutionary computation
evolutionary computation (EC)
Genetic algorithms
Machine learning
machine learning (ML)
multiobjective optimization
Multiple objective analysis
myoelectric control
Myoelectricity
Optimization
Pattern recognition
Prostheses
Robust control
Sensors
Sorting algorithms
Supervised learning
Support vector machines
surface electromyography (sEMG) signal classification
System effectiveness
Training
Title Toward Robust and Accurate Myoelectric Controller Design Based on Multiobjective Optimization Using Evolutionary Computation
URI https://ieeexplore.ieee.org/document/10387215
https://www.proquest.com/docview/2932574989
Volume 24
WOSCitedRecordID wos001280080300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFD6oFNQHbdXSrVry0KfCrJlNZjN59LIiRVexCvs25DZosTOyF2GhP96Ti7JQLPgWyIWBLznnZHLO9wF87zOHQYDimRaMZVxrtINa51mRC1NIaYXQQbXkXAyH5Wgkr1KxeqiFcc6F5DPX9c3wlm9bM_O_yg48mTfeWIplWBaiH4u1Xp8MpAi0nniCacaZGKUnzJzKg5-_BsOu1wnvMl846XkzF5xQUFX5xxQH_3K6-c4v-wgbKZAkhxH5T7Dkmi1YX6AX3ILVpHB-N9-GvzchP5Zct3o2mRLVWHJozMwTRZCLeRvVcO4NOY6p6w9uTE5Ccgc5Qj9nSduQUKvb6t_RRJJLNDZ_UhUnCZkHZPCUNrIaz0nUiwjdO3B7Org5PsuS8kJmepJPM1P0jFQW3bcPwCxldd1zHA-7MrS0rKaFNqXJddHjzJTo9JWwkioMJZ2tS1Ozz7DStI37AkTSGk0ARiEce5WlSltppSyEljk2-h2gL1BUJtGSe3WMhypcT6isPHqVR69K6HXgx-uUx8jJ8b_BOx6uhYERqQ7svQBepWM7qTD2QRPGZSm_vjFtF9ZwdR6z0PZgZTqeuX34YJ6m95Pxt7AjnwHgud8-
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD5oFdo-VK0trm01Dz4Js81MMs3ksbZbqm5X0RX2bchtsFJnyl4KC_54Ty4tC8WCb4EkZOBLzjmZnPN9AO-OmMMgQPFMC8YyrjXaQa3zrMyFKaW0QuigWjIUo1E1mcivqVg91MI450Lymev7ZnjLt51Z-F9lh57MG28s5WN4UnJe0FiudfdoIEUg9sQzTDPOxCQ9YuZUHn76Phj1vVJ4n_nSSc-cueKGgq7KPWMcPMzZs__8tuewlUJJchyxfwGPXLsNmysEg9uwnjTOfy5fwp9xyJAl3zq9mM2Jai05NmbhqSLIxbKLejiXhpzE5PUrNyWnIb2DfEBPZ0nXklCt2-lf0UiSL2hufqc6ThJyD8jgJm1lNV2SqBgRunfgx9lgfHKeJe2FzBSSzzNTFkYqiw7ch2CWsqYpHMfjrgytLGtoqU1lcl0WnJkK3b4SVlKFwaSzTWUatgtrbde6V0AkbdAIYBzCsVdZqrSVVspSaJlj46gH9BaK2iRicq-PcVWHCwqVtUev9ujVCb0evL-bch1ZOR4avOPhWhkYkerB_i3gdTq4sxqjHzRiXFby9T-mvYX18_HFsB5-HH3egw1cicectH1Ym08X7gCempv55Wz6JuzOv6Ff4oU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Robust+and+Accurate+Myoelectric+Controller+Design+Based+on+Multiobjective+Optimization+Using+Evolutionary+Computation&rft.jtitle=IEEE+sensors+journal&rft.au=Ahmed+Aqeel+Shaikh&rft.au=Mukhopadhyay%2C+Anand+Kumar&rft.au=Poddar%2C+Soumyajit&rft.au=Samui%2C+Suman&rft.date=2024-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=5&rft.spage=6418&rft_id=info:doi/10.1109%2FJSEN.2023.3347949&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon