Adaptive Diagnosis for Transformer with Unknown Faults Based on Antenna-Augmented RFID Sensor and Deep Learning

In engineering practice, transformers always have one or more new mechanical fault types that have not been found yet, which would decrease the diagnosis accuracy. This work introduces an adaptive fault diagnosis approach for transformer mechanical failure in incubation period with unknown fault typ...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE sensors journal Ročník 23; číslo 17; s. 1
Hlavní autori: Wang, Tao, Xiao, Yanxia, Li, Bing, He, Yigang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1530-437X, 1558-1748
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In engineering practice, transformers always have one or more new mechanical fault types that have not been found yet, which would decrease the diagnosis accuracy. This work introduces an adaptive fault diagnosis approach for transformer mechanical failure in incubation period with unknown fault types. An antenna-augmented radio frequency identification (RFID) sensor is used to acquire vibration signal and position information. The faults' signals of transformer are generally featured as nonlinear, moreover, it always contains unknown faults, making it hard to extract discriminative features from the obtained signals. Therefore, an adaptive fault diagnosis method consisting of sparse stacked denoising autoencoder (SSDA) and unknown fault cluster is proposed. The SSDA is adopted to extract robust feature and quantum particle swarm optimization (QPSO) is employed to find the optimal the layer nodes structure and learning rate of the SSDA model. The SSDA model along with a full-connected layer can divide the data into known faults and unknown faults. The knowns faults are classified by support vector machine (SVM), and the unknown faults are divided into different categories by using the fault cluster. The experiments validate that the augmented RFID sensor has reliable communication performance within the distance of 17.5m. Moreover, the proposed method achieves prominent results for transformer fault diagnosis with unknown faults.
AbstractList In engineering practice, transformers always have one or more new mechanical fault types that have not been found yet, which would decrease the diagnosis accuracy. This work introduces an adaptive fault diagnosis approach for transformer mechanical failure in incubation period with unknown fault types. An antenna-augmented radio frequency identification (RFID) sensor is used to acquire vibration signal and position information. The faults’ signals of transformer are generally featured as nonlinear; moreover, it always contains unknown faults, making it hard to extract discriminative features from the obtained signals. Therefore, an adaptive fault diagnosis method consisting of sparse stacked denoising autoencoder (SSDA) and unknown fault cluster is proposed. The SSDA is adopted to extract robust feature and quantum particle swarm optimization (QPSO) is employed to find the optimal the layer node structure (LNS) and learning rate (LR) of the SSDA model. The SSDA model along with a full-connected layer (FCL) can divide the data into known faults and unknown faults. The knowns faults are classified by support vector machine (SVM), and the unknown faults are divided into different categories by using the fault cluster. The experiments validate that the augmented RFID sensor has reliable communication performance within the distance of 17.5 m. Moreover, the proposed method achieves prominent results for transformer fault diagnosis with unknown faults.
In engineering practice, transformers always have one or more new mechanical fault types that have not been found yet, which would decrease the diagnosis accuracy. This work introduces an adaptive fault diagnosis approach for transformer mechanical failure in incubation period with unknown fault types. An antenna-augmented radio frequency identification (RFID) sensor is used to acquire vibration signal and position information. The faults' signals of transformer are generally featured as nonlinear, moreover, it always contains unknown faults, making it hard to extract discriminative features from the obtained signals. Therefore, an adaptive fault diagnosis method consisting of sparse stacked denoising autoencoder (SSDA) and unknown fault cluster is proposed. The SSDA is adopted to extract robust feature and quantum particle swarm optimization (QPSO) is employed to find the optimal the layer nodes structure and learning rate of the SSDA model. The SSDA model along with a full-connected layer can divide the data into known faults and unknown faults. The knowns faults are classified by support vector machine (SVM), and the unknown faults are divided into different categories by using the fault cluster. The experiments validate that the augmented RFID sensor has reliable communication performance within the distance of 17.5m. Moreover, the proposed method achieves prominent results for transformer fault diagnosis with unknown faults.
Author Wang, Tao
He, Yigang
Xiao, Yanxia
Li, Bing
Author_xml – sequence: 1
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei, China
– sequence: 2
  givenname: Yanxia
  surname: Xiao
  fullname: Xiao, Yanxia
  organization: Anhui Heli Co., Ltd, Hefei, China
– sequence: 3
  givenname: Bing
  surname: Li
  fullname: Li, Bing
  organization: School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, China
– sequence: 4
  givenname: Yigang
  orcidid: 0000-0002-6642-0740
  surname: He
  fullname: He, Yigang
  organization: School of Electrical Engineering, Wuhan University, Wuhan, China
BookMark eNp9kE1LAzEQhoMoqNUfIHgIeN6aZJsmOVbb-kFR8AO8LelmtkbbSU1SxX_vlvYgHjzNe3ifGeY5JLsYEAg54azLOTPnt4-ju65gouyWwhim-Q454FLqgque3l3nkhW9Ur3sk8OU3hjjRkl1QMLA2WX2n0CH3s4wJJ9oEyJ9ihZTGxYQ6ZfPr_QZ3zF8IR3b1TwnemETOBqQDjADoi0Gq9kC2uzow_hmSB8BU7vGoqNDgCWdgI3ocXZE9ho7T3C8nR3yPB49XV4Xk_urm8vBpKiF6eWiLkFo0y_ltM9qJxunjBJOQFMbJxVT4JS2rm4_r7ViThruhLTTZmr6RmsBZYecbfYuY_hYQcrVW1hFbE9WQkutZOtKti21adUxpBShqWqfbfYBc7R-XnFWre1Wa7vV2m61tduS_A-5jH5h4_e_zOmG8QDwq8-N7vV5-QMbBYgp
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1177_14759217251350560
Cites_doi 10.1038/s41598-021-83184-2
10.1049/iet-smt.2017.0124
10.1109/ACCESS.2019.2925426
10.1109/TIE.2015.2464297
10.1016/j.ins.2016.02.044
10.1109/TIM.2016.2575318
10.1177/14759217221117101
10.1142/s1793536909000047
10.1109/JSEN.2017.2738028
10.1049/iet-epa.2018.5545
10.1109/JSEN.2022.3203994
10.3390/ma15217851
10.1007/s11042-022-12701-w
10.1155/2020/7407236
10.1109/TIE.2013.2284143
10.15837/ijccc.2020.1.3780
10.1109/JSEN.2017.2687942
10.1109/TIM.2020.3035385
10.1109/TII.2020.2988208
10.1002/stc.3129
10.1109/TPWRD.2005.852280
10.1016/j.jmsy.2022.03.009
10.3390/s22062352
10.1016/j.isatra.2021.06.005
10.1109/TIM.2015.2502922
10.1007/s10489-022-03773-0
10.1109/TIM.2016.2598019
10.1016/j.eswa.2010.12.095
10.1016/j.neucom.2015.07.130
10.1109/TPWRD.2014.2376033
10.1109/tii.2022.3232766
10.1109/JSEN.2018.2844799
10.1109/TIM.2016.2566838
10.1016/j.ymssp.2023.110229
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2023.3299081
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2023_3299081
10198461
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51577046; 52167008
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Plan "smart grid technology and equipment"
  grantid: 2020YFB0905900
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-c3e289635b60cd5fd7972d2efc9d5707ed78adc109c870d591d25abfb969882e3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001059669700149&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:11:13 EDT 2025
Sat Nov 29 06:39:38 EST 2025
Tue Nov 18 21:33:21 EST 2025
Wed Aug 27 02:57:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-c3e289635b60cd5fd7972d2efc9d5707ed78adc109c870d591d25abfb969882e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6642-0740
0009-0003-7350-8649
0009-0009-8693-1079
PQID 2858752025
PQPubID 75733
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2023_3299081
proquest_journals_2858752025
crossref_primary_10_1109_JSEN_2023_3299081
ieee_primary_10198461
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref34
ref15
ref37
ref14
ref36
ref11
ref33
ref10
ref32
ref2
ref1
ref17
(ref38) 2008
ref16
ref19
ref18
(ref30) 2012
Wang (ref12) 2018; 13
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Vincent (ref31) 2010; 11
ref28
ref27
ref29
ref7
Gharehpetian (ref8) 2023
ref9
ref4
ref3
ref6
ref5
Hardin (ref39) 1997; 63
ref40
References_xml – ident: ref23
  doi: 10.1038/s41598-021-83184-2
– ident: ref2
  doi: 10.1049/iet-smt.2017.0124
– ident: ref5
  doi: 10.1109/ACCESS.2019.2925426
– ident: ref19
  doi: 10.1109/TIE.2015.2464297
– ident: ref20
  doi: 10.1016/j.ins.2016.02.044
– ident: ref18
  doi: 10.1109/TIM.2016.2575318
– ident: ref13
  doi: 10.1177/14759217221117101
– ident: ref34
  doi: 10.1142/s1793536909000047
– ident: ref10
  doi: 10.1109/JSEN.2017.2738028
– ident: ref3
  doi: 10.1049/iet-epa.2018.5545
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref31
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref4
  doi: 10.1109/JSEN.2022.3203994
– ident: ref7
  doi: 10.3390/ma15217851
– volume-title: SMS7630 Series Surface-Mount Schottky Diodes
  year: 2012
  ident: ref30
– ident: ref22
  doi: 10.1007/s11042-022-12701-w
– ident: ref32
  doi: 10.1155/2020/7407236
– ident: ref15
  doi: 10.1109/TIE.2013.2284143
– ident: ref26
  doi: 10.15837/ijccc.2020.1.3780
– volume: 63
  start-page: 735
  issue: 6
  year: 1997
  ident: ref39
  article-title: Statistical significance and normalized confusion matrices
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref1
  doi: 10.1109/JSEN.2017.2687942
– ident: ref28
  doi: 10.1109/TIM.2020.3035385
– ident: ref29
  doi: 10.1109/TII.2020.2988208
– ident: ref25
  doi: 10.1002/stc.3129
– ident: ref37
  doi: 10.1109/TPWRD.2005.852280
– ident: ref35
  doi: 10.1016/j.jmsy.2022.03.009
– ident: ref6
  doi: 10.3390/s22062352
– ident: ref24
  doi: 10.1016/j.isatra.2021.06.005
– ident: ref17
  doi: 10.1109/TIM.2015.2502922
– volume: 13
  start-page: 2134
  issue: 5
  year: 2018
  ident: ref12
  article-title: Fault diagnosis of transformer based on self-powered RFID sensor tag and improved HHT
  publication-title: J. Elect. Eng. Technol.
– ident: ref40
  doi: 10.1007/s10489-022-03773-0
– ident: ref14
  doi: 10.1109/TIM.2016.2598019
– volume-title: EPC Radio-Frequency Identity Protocols Generation-2 UHF RFID
  year: 2008
  ident: ref38
– volume-title: Power Transformer Online Monitoring Using Electromagnetic Waves
  year: 2023
  ident: ref8
– ident: ref33
  doi: 10.1016/j.eswa.2010.12.095
– ident: ref21
  doi: 10.1016/j.neucom.2015.07.130
– ident: ref36
  doi: 10.1109/TPWRD.2014.2376033
– ident: ref27
  doi: 10.1109/tii.2022.3232766
– ident: ref11
  doi: 10.1109/JSEN.2018.2844799
– ident: ref16
  doi: 10.1109/TIM.2016.2566838
– ident: ref9
  doi: 10.1016/j.ymssp.2023.110229
SSID ssj0019757
Score 2.3946223
Snippet In engineering practice, transformers always have one or more new mechanical fault types that have not been found yet, which would decrease the diagnosis...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms adaptive fault diagnosis
antenna-augmented RFID sensor
Antennas
cluster
Clusters
Deep learning
Fault diagnosis
Faults
Feature extraction
Machine learning
Particle swarm optimization
Power transformers
Radio frequency identification
Radiofrequency identification
Sensors
sparse stacked denoising autoencoder
Support vector machines
transformer
Transformers
Vibrations
Title Adaptive Diagnosis for Transformer with Unknown Faults Based on Antenna-Augmented RFID Sensor and Deep Learning
URI https://ieeexplore.ieee.org/document/10198461
https://www.proquest.com/docview/2858752025
Volume 23
WOSCitedRecordID wos001059669700149&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEBapCbQ9NGmaUrdO0KGnwLr7krU6urVNEoIJsV18WyTN2DWYtfGj0H_fkVYOCaWF3vagEYs-zUvzYuxzRuLQkuyPjESIclfEVaRJHs2gkFZipo2Pnn-_k8NhMZ2q-1Cs7mthENEnn2HbffpYPqzs3j2VEYeTi5w7Z-eFlLIu1noMGSjp23oSB8dRnslpCGEmsfpyO-oP225OeDtz0rdInikhP1XlD1Hs9cvg5D__7JS9CYYk79bIv2VHWJ2x10_aC56xl2HC-Y9f79iqC3rtRBvv1cl1iy0ne5WPD4Yrbrh7k-WTyj2zVXyg98vdln8lLQd8VfGuy3WvdNTdz30fT-APg5seH5EbTNvoCngPcc1Dv9b5OZsM-uNv11EYthDZVOW7yGZIvheZH6YTWxAzkEqmkOLMKhAyJiRlocHScVpicRAqgVRoMzOqo8hKx-w9a1SrCj8wnnd0B5IYQGCWp1oUmQZjLRoyzYRJTZPFh9MvbehE7gZiLEvvkcSqdICVDrAyANZkV48k67oNx78WnzuEniyswWmy1gHjMnDqtkwLQS4bkYuPfyH7xF653evEshZr7DZ7vGDH9udusd1c-kv4G0-r2XE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH9CA2lwYDA2UdjAB05IKYlj1_Gx0FUblAqxDvUW2X7umDSlVT-Q-O95dtxpaGIStxz8ksg_vy-_L4B3JYlDR7I_s8pjJkIRV8ULkc2wUk750tgYPf8xUuNxNZ3qb6lYPdbCeO9j8pnvhscYy8e524SrMuJwcpFFcHYeSiF40ZZr3QQNtIqNPYmH80yUapqCmEWuP3w-Pxl3w6Twbhnkb1X8pYbiXJU7wjhqmOHef_7bM3iaTEnWb7F_Dg98sw9PbjUY3IfdNOP85-8XMO-jWQThxgZtet3VipHFyiZb09UvWbiVZRdNuGhr2NBsrtcr9pH0HLJ5w_oh270xWX9zGTt5Ivs-PBuwc3KE6TWmQTbwfsFSx9bLA7gYnkw-nWZp3ELmuBbrzJWevC8yQGwvdyhnqLTiyP3MaZQqJyxVZdDRdjpicpS6QC6NnVnd02Sn-_IQdpp5418CEz3TwyJHlL4U3MiqNGid85aMM2m57UC-3f3apV7kYSTGdR19klzXAbA6AFYnwDrw_oZk0TbiuG_xQUDo1sIWnA4cbTGuE6-ual5JctqIXL76B9lb2D2dfB3Vo7Pxl9fwOHypTTM7gp31cuOP4ZH7tb5aLd_EA_kHxbfcuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Diagnosis+for+Transformer+With+Unknown+Faults+Based+on+Antenna-Augmented+RFID+Sensor+and+Deep+Learning&rft.jtitle=IEEE+sensors+journal&rft.au=Wang%2C+Tao&rft.au=Xiao%2C+Yanxia&rft.au=Li%2C+Bing&rft.au=He%2C+Yigang&rft.date=2023-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=17&rft.spage=20423&rft_id=info:doi/10.1109%2FJSEN.2023.3299081&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon