Deterministic algorithms for the hidden subgroup problem

The hidden subgroup problem (HSP) plays a crucial role in the field of quantum computing, since several celebrated quantum algorithms including Shor's algorithm have a uniform description in the framework of HSP. The problem is as follows: for a finite group G and a finite set X, given a functi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information and computation Ročník 289; s. 104975
Hlavní autori: Ye, Zekun, Li, Lvzhou
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.11.2022
Predmet:
ISSN:0890-5401, 1090-2651
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The hidden subgroup problem (HSP) plays a crucial role in the field of quantum computing, since several celebrated quantum algorithms including Shor's algorithm have a uniform description in the framework of HSP. The problem is as follows: for a finite group G and a finite set X, given a function f:G→X and the promise that for any g1,g2∈G,f(g1)=f(g2) iff g1H=g2H for a subgroup H≤G, the goal of the decision version is to determine whether H is trivial, and the goal of the search version is to find H. Nayak (2021) asked whether there exist deterministic algorithms with O(|G||H|) query complexity for HSP. We answer this problem for Abelian groups, which also extends the main results of Ye et al. (2021), since here the algorithms do not rely on any prior knowledge of H.
ISSN:0890-5401
1090-2651
DOI:10.1016/j.ic.2022.104975