CCDF-TAP: A Context-Aware Conflict Detection Framework for IoT Trigger-Action Programming With Graph Neural Network
The rapid expansion of the Internet of Things (IoT) has led to the development of smart homes and automation systems. Trigger-action programming (TAP) has emerged as a prevalent paradigm used in IoT, facilitating the creation of automation rules. However, with the proliferation of TAP rules, the pot...
Uloženo v:
| Vydáno v: | IEEE internet of things journal Ročník 11; číslo 19; s. 31534 - 31544 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2327-4662, 2327-4662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The rapid expansion of the Internet of Things (IoT) has led to the development of smart homes and automation systems. Trigger-action programming (TAP) has emerged as a prevalent paradigm used in IoT, facilitating the creation of automation rules. However, with the proliferation of TAP rules, the potential for conflicts between them grows significantly, which results in undesired outcomes or even safety risks. In this article, we propose a context-aware conflict detection framework for TAP rules, called CCDF-TAP, to identify the potential rule conflicts. Specifically, we incorporate external knowledge and context information during the TAP data preprocessing stage, which is conducive to accurately defining the rule conflicts. Then, based on the above information, the conflict types are defined and a conflict graph is constructed, which establishes a unified format for the rule conflict detection task. Finally, we propose a novel algorithm called dual-channel graph attention auto-encoders (DualGAAs) for efficient conflict detection, which takes the conflict graph as the input and excels in accurately identifying conflicts. Extensive experiments conducted on a comprehensive IFTTT data set demonstrate the superiority of DualGAA in detecting conflicts, achieving an exceptional accuracy of 98.85% and an F1 score of 98.91%. The contributions of our study offer a comprehensive end-to-end solution for context-aware conflict detection in TAP rules, thereby significantly enhancing the security and dependability of IoT smart home systems. |
|---|---|
| AbstractList | The rapid expansion of the Internet of Things (IoT) has led to the development of smart homes and automation systems. Trigger-action programming (TAP) has emerged as a prevalent paradigm used in IoT, facilitating the creation of automation rules. However, with the proliferation of TAP rules, the potential for conflicts between them grows significantly, which results in undesired outcomes or even safety risks. In this article, we propose a context-aware conflict detection framework for TAP rules, called CCDF-TAP, to identify the potential rule conflicts. Specifically, we incorporate external knowledge and context information during the TAP data preprocessing stage, which is conducive to accurately defining the rule conflicts. Then, based on the above information, the conflict types are defined and a conflict graph is constructed, which establishes a unified format for the rule conflict detection task. Finally, we propose a novel algorithm called dual-channel graph attention auto-encoders (DualGAAs) for efficient conflict detection, which takes the conflict graph as the input and excels in accurately identifying conflicts. Extensive experiments conducted on a comprehensive IFTTT data set demonstrate the superiority of DualGAA in detecting conflicts, achieving an exceptional accuracy of 98.85% and an F1 score of 98.91%. The contributions of our study offer a comprehensive end-to-end solution for context-aware conflict detection in TAP rules, thereby significantly enhancing the security and dependability of IoT smart home systems. |
| Author | Hu, Liang Hu, Juncheng Xing, Yongheng Du, Xinqi Shen, Zhiqi Wang, Feng |
| Author_xml | – sequence: 1 givenname: Yongheng orcidid: 0000-0003-4980-1813 surname: Xing fullname: Xing, Yongheng email: xingyh18@mails.jlu.edu.cn organization: College of Computer Science and Technology, Jilin University, Changchun, China – sequence: 2 givenname: Liang orcidid: 0000-0002-6077-1873 surname: Hu fullname: Hu, Liang organization: College of Computer Science and Technology, Jilin University, Changchun, China – sequence: 3 givenname: Xinqi orcidid: 0000-0003-0195-6859 surname: Du fullname: Du, Xinqi email: duxq18@mails.jlu.edu.cn organization: School of Artificial Intelligence, Jilin University, Changchun, China – sequence: 4 givenname: Zhiqi orcidid: 0000-0001-7626-7295 surname: Shen fullname: Shen, Zhiqi email: zqshen@ntu.edu.sg organization: Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY) and the School of Computer Science and Engineering, Nanyang Technological University, Jurong West, Singapore – sequence: 5 givenname: Juncheng orcidid: 0000-0002-6232-9093 surname: Hu fullname: Hu, Juncheng email: jchu@jlu.edu.cn organization: College of Computer Science and Technology, Jilin University, Changchun, China – sequence: 6 givenname: Feng orcidid: 0000-0002-0732-7343 surname: Wang fullname: Wang, Feng email: feng_w@jlu.edu.cn organization: College of Computer Science and Technology, Jilin University, Changchun, China |
| BookMark | eNp9kE1PwkAQhjdGExH5ASYeNvFc3K-21FtTBDFEONR4bLbLtCxCF7dL0H9vm3IgHrzs7CTPM5N5b9BlZSpA6I6SIaUkenydLdIhI0wMuaAj4UcXqMc4Cz0RBOzy7H-NBnW9IYQ0mk-joIfqJBlPvDRePuEYJ6Zy8O28-CgttF2x1crhMThQTpsKT6zcwdHYT1wYi2cmxanVZQnWiztgaU3ZMDtdlfhDuzWeWrlf4zc4WLltimvlW3RVyG0Ng1Pto_fJc5q8ePPFdJbEc0-xSLj2lX4U0UJwWVAIaR4pIDJnkBPq50CBiYJHeRgUuWK5zNUqFBR4uGpaLhXvo4du7t6arwPULtuYg62alRlvYhOjER-Jhgo7SllT1xaKTGkn22uclXqbUZK1IWdtyFkbcnYKuTHpH3Nv9U7an3-d-87RAHDG-yERhPBfmM6KOQ |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_1109_JIOT_2025_3579920 crossref_primary_10_1016_j_neucom_2025_131529 crossref_primary_10_3390_app15094795 crossref_primary_10_3390_app15073727 crossref_primary_10_1145_3722231 |
| Cites_doi | 10.1109/TDSC.2022.3162312 10.1145/3629517 10.1145/3290605.3300782 10.1145/3597926.3598084 10.1109/SP40001.2021.00108 10.1609/aaai.v34i05.6510 10.1109/TSE.2022.3179294 10.1109/TASE.2022.3141590 10.1109/DSN48063.2020.00056 10.14722/ndss.2019.23326 10.1016/j.cose.2022.102812 10.1109/ICWS53863.2021.00048 10.1109/SP46215.2023.10179425 10.1109/TBDATA.2022.3177455 10.1109/TIFS.2019.2899758 10.1109/JIOT.2020.2978770 10.1109/TIFS.2022.3214084 10.1145/3319535.3345662 10.48550/ARXIV.1609.02907 10.1109/JIOT.2022.3222615 10.1109/ICSE.2019.00043 10.1145/3485730.3494115 10.1145/3569506 10.1109/TASE.2018.2789658 10.1609/aaai.v31i1.11164 10.1145/3460319.3464838 10.3115/v1/D14-1162 10.1145/2556288.2557420 10.14722/ndss.2021.24368 10.1145/3057861 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2024.3418459 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 31544 |
| ExternalDocumentID | 10_1109_JIOT_2024_3418459 10570400 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Talent Project of Department of Science and Technology of Jilin Province of China grantid: 20240602106RC – fundername: Central University Basic Scientific Research Fund grantid: 2023-JCXK-04 – fundername: Science and Technology Development Plan of Jilin Province of China grantid: 20220101115JC – fundername: Project of Jilin Province Development, and Reform Commission grantid: 2019FGWTZC001 – fundername: National Key Research and Development Plan of China grantid: 2017YFA0604500 funderid: 10.13039/501100012166 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-c29a5991f43af1e71b9ce0ab2eb015be1e24f39b76fbc2babcd741e37dbc23ac3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001322588600043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Mon Jun 30 15:49:29 EDT 2025 Sat Nov 29 01:44:06 EST 2025 Tue Nov 18 22:42:22 EST 2025 Wed Aug 27 01:53:53 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-c29a5991f43af1e71b9ce0ab2eb015be1e24f39b76fbc2babcd741e37dbc23ac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0732-7343 0000-0001-7626-7295 0000-0002-6232-9093 0000-0002-6077-1873 0000-0003-0195-6859 0000-0003-4980-1813 |
| PQID | 3109488384 |
| PQPubID | 2040421 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_10570400 proquest_journals_3109488384 crossref_citationtrail_10_1109_JIOT_2024_3418459 crossref_primary_10_1109_JIOT_2024_3418459 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref12 ref34 ref15 ref14 Devlin (ref28) 2018 ref31 ref30 ref11 ref10 ref32 ref2 Fu (ref13) ref1 ref17 ref16 ref19 Veličković (ref36) 2017 Salehi (ref38) 2019 Chi (ref18) ref24 ref23 ref26 ref25 ref20 Ramos (ref33); 242 Kipf (ref37) 2016 ref22 ref21 Mikolov (ref29) 2013 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – year: 2019 ident: ref38 article-title: Graph attention auto-encoders publication-title: arXiv:1905.10715 – ident: ref8 doi: 10.1109/TDSC.2022.3162312 – ident: ref12 doi: 10.1145/3629517 – ident: ref5 doi: 10.1145/3290605.3300782 – ident: ref17 doi: 10.1145/3597926.3598084 – ident: ref6 doi: 10.1109/SP40001.2021.00108 – ident: ref31 doi: 10.1609/aaai.v34i05.6510 – ident: ref22 doi: 10.1109/TSE.2022.3179294 – ident: ref2 doi: 10.1109/TASE.2022.3141590 – ident: ref19 doi: 10.1109/DSN48063.2020.00056 – ident: ref21 doi: 10.14722/ndss.2019.23326 – ident: ref10 doi: 10.1016/j.cose.2022.102812 – ident: ref26 doi: 10.1109/ICWS53863.2021.00048 – ident: ref7 doi: 10.1109/SP46215.2023.10179425 – ident: ref32 doi: 10.1109/TBDATA.2022.3177455 – ident: ref20 doi: 10.1109/TIFS.2019.2899758 – ident: ref3 doi: 10.1109/JIOT.2020.2978770 – ident: ref16 doi: 10.1109/TIFS.2022.3214084 – start-page: 1559 volume-title: Proc. 32nd USENIX Security Symp. (USENIX Security) ident: ref18 article-title: Detecting and handling IoT interaction threats in multi-platform multi-control-channel smart homes – ident: ref11 doi: 10.1145/3319535.3345662 – year: 2013 ident: ref29 article-title: Efficient estimation of word representations in vector space publication-title: arXiv:1301.3781 – year: 2017 ident: ref36 article-title: Graph attention networks publication-title: arXiv:1710.10903 – ident: ref35 doi: 10.48550/ARXIV.1609.02907 – year: 2018 ident: ref28 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: arXiv:1810.04805 – ident: ref15 doi: 10.1109/JIOT.2022.3222615 – ident: ref23 doi: 10.1109/ICSE.2019.00043 – ident: ref34 doi: 10.1145/3485730.3494115 – ident: ref9 doi: 10.1145/3569506 – ident: ref1 doi: 10.1109/TASE.2018.2789658 – ident: ref27 doi: 10.1609/aaai.v31i1.11164 – volume: 242 start-page: 29 volume-title: Proc. 1st Instruct. Conf. Mach. Learn. ident: ref33 article-title: Using TF-IDF to determine word relevance in document queries – year: 2016 ident: ref37 article-title: Variational graph auto-encoders publication-title: arXiv:1611.07308 – ident: ref14 doi: 10.1145/3460319.3464838 – start-page: 4223 volume-title: Proc. 30th USENIX Security Symp. (USENIX Security) ident: ref13 article-title: HAWatcher: Semantics-aware anomaly detection for appified smart homes – ident: ref30 doi: 10.3115/v1/D14-1162 – ident: ref4 doi: 10.1145/2556288.2557420 – ident: ref24 doi: 10.14722/ndss.2021.24368 – ident: ref25 doi: 10.1145/3057861 |
| SSID | ssj0001105196 |
| Score | 2.351896 |
| Snippet | The rapid expansion of the Internet of Things (IoT) has led to the development of smart homes and automation systems. Trigger-action programming (TAP) has... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 31534 |
| SubjectTerms | Algorithms Automation Conflict detection Context Data mining graph neural network (GNN) Graph neural networks Internet of Things Internet of Things (IoT) Programming Security Smart buildings Smart homes Smart houses trigger-action programming (TAP) |
| Title | CCDF-TAP: A Context-Aware Conflict Detection Framework for IoT Trigger-Action Programming With Graph Neural Network |
| URI | https://ieeexplore.ieee.org/document/10570400 https://www.proquest.com/docview/3109488384 |
| Volume | 11 |
| WOSCitedRecordID | wos001322588600043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-UePAifmBE0fTgyWSwrWVj3hYQxRjkMJXbsnZvkUTBwNB_3_e6oSRGEy_LmrRLs1_b93uv74Oxc6RACrUK38LVlFrSy7QVKCVQVRFIDrzMTkwdssc7fzjsjMfBqAxWN7EwAGCcz6BJr-YuP53pJZnKWlSTlhbdJtv0fa8I1vo2qDjERrzy5tKxg9bt4D5CDdCVTTyqO5LSka7JHlNM5ccJbMRKv_rPCe2ynZI_8rAAfI9twHSfVVe1GXi5VQ_Yotvt9a0oHF3ykJsUVKjhhh_JHKhlIkF4D3LjiDXl_ZWLFkcOyweziEeotZO9Lyw6jAo3rlcUdPxpkj_za0p0zSm1B85mWPiS19hD_yrq3lhlgQVLu4HM6Zm0kSBmUiSZA76jAg12olxQyBIUOODKTATK9zKlXZUonSIBAeGn2BSJFoesMp1N4YhxqUCk0HFIH5ICJaADnqdk6kFmBzpt15m9-vWxLrOPUxGMl9hoIXYQE1oxoRWXaNXZxdeQtyL1xl-dawTPWscCmTprrACOy925iCkbKh5coiOPfxl2wrbp64XXXoNV8vkSTtmWfs8ni_mZWXifr2DWoA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6VFAkuUF4iPNo99FTJwfZu7Lg3KyElJU1zMI-b5V2P1UglQYkDf78zaweQUJG4WF5pV1752935ZnYeAF-JAmnSKkKHVlPuqKAwTqS1JFVFEjkICjezdciuh-Fo1Lm9jcZ1sLqNhUFE63yGLX61d_n5zCzZVHbGNWl50a3Bx7ZSvluFaz2bVDzmI0F9d-m50dnPwe-EdEBfteiw7ihOSPpC-thyKq_OYCtY-tvvnNIn2KoZpIgryHfgA053YXtVnUHUm3UPFt1ur-8k8fi7iIVNQkU6bvyYzZFbNhZE9LC0rlhT0V85aQlisWIwS0RCejtb_OKqw7hy5LojUSduJuUf8YNTXQtO7kGzGVXe5Ptw1T9PuhdOXWLBMX6kSn5mbaKIhZJZ4WHo6cigm2kfNfEEjR76qpCRDoNCG19n2uREQVCGOTVlZuQBNKazKR6CUBpljh2PNSIlSQZ6GARa5QEWbmTydhPc1a9PTZ1_nMtg_E2tHuJGKaOVMlppjVYTvj0Nua-Sb7zVeZ_hedGxQqYJJyuA03p_LlLOh0pHl-yoo_8M-wIbF8mvYTocjC6PYZO_VPnwnUCjnC_xFNbNQzlZzD_bRfgP_vzZ5w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CCDF-TAP%3A+A+Context-Aware+Conflict+Detection+Framework+for+IoT+Trigger-Action+Programming+With+Graph+Neural+Network&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Xing%2C+Yongheng&rft.au=Hu%2C+Liang&rft.au=Du%2C+Xinqi&rft.au=Shen%2C+Zhiqi&rft.date=2024-10-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=11&rft.issue=19&rft.spage=31534&rft.epage=31544&rft_id=info:doi/10.1109%2FJIOT.2024.3418459&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2024_3418459 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |