CCDF-TAP: A Context-Aware Conflict Detection Framework for IoT Trigger-Action Programming With Graph Neural Network

The rapid expansion of the Internet of Things (IoT) has led to the development of smart homes and automation systems. Trigger-action programming (TAP) has emerged as a prevalent paradigm used in IoT, facilitating the creation of automation rules. However, with the proliferation of TAP rules, the pot...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE internet of things journal Ročník 11; číslo 19; s. 31534 - 31544
Hlavní autoři: Xing, Yongheng, Hu, Liang, Du, Xinqi, Shen, Zhiqi, Hu, Juncheng, Wang, Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2327-4662, 2327-4662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The rapid expansion of the Internet of Things (IoT) has led to the development of smart homes and automation systems. Trigger-action programming (TAP) has emerged as a prevalent paradigm used in IoT, facilitating the creation of automation rules. However, with the proliferation of TAP rules, the potential for conflicts between them grows significantly, which results in undesired outcomes or even safety risks. In this article, we propose a context-aware conflict detection framework for TAP rules, called CCDF-TAP, to identify the potential rule conflicts. Specifically, we incorporate external knowledge and context information during the TAP data preprocessing stage, which is conducive to accurately defining the rule conflicts. Then, based on the above information, the conflict types are defined and a conflict graph is constructed, which establishes a unified format for the rule conflict detection task. Finally, we propose a novel algorithm called dual-channel graph attention auto-encoders (DualGAAs) for efficient conflict detection, which takes the conflict graph as the input and excels in accurately identifying conflicts. Extensive experiments conducted on a comprehensive IFTTT data set demonstrate the superiority of DualGAA in detecting conflicts, achieving an exceptional accuracy of 98.85% and an F1 score of 98.91%. The contributions of our study offer a comprehensive end-to-end solution for context-aware conflict detection in TAP rules, thereby significantly enhancing the security and dependability of IoT smart home systems.
AbstractList The rapid expansion of the Internet of Things (IoT) has led to the development of smart homes and automation systems. Trigger-action programming (TAP) has emerged as a prevalent paradigm used in IoT, facilitating the creation of automation rules. However, with the proliferation of TAP rules, the potential for conflicts between them grows significantly, which results in undesired outcomes or even safety risks. In this article, we propose a context-aware conflict detection framework for TAP rules, called CCDF-TAP, to identify the potential rule conflicts. Specifically, we incorporate external knowledge and context information during the TAP data preprocessing stage, which is conducive to accurately defining the rule conflicts. Then, based on the above information, the conflict types are defined and a conflict graph is constructed, which establishes a unified format for the rule conflict detection task. Finally, we propose a novel algorithm called dual-channel graph attention auto-encoders (DualGAAs) for efficient conflict detection, which takes the conflict graph as the input and excels in accurately identifying conflicts. Extensive experiments conducted on a comprehensive IFTTT data set demonstrate the superiority of DualGAA in detecting conflicts, achieving an exceptional accuracy of 98.85% and an F1 score of 98.91%. The contributions of our study offer a comprehensive end-to-end solution for context-aware conflict detection in TAP rules, thereby significantly enhancing the security and dependability of IoT smart home systems.
Author Hu, Liang
Hu, Juncheng
Xing, Yongheng
Du, Xinqi
Shen, Zhiqi
Wang, Feng
Author_xml – sequence: 1
  givenname: Yongheng
  orcidid: 0000-0003-4980-1813
  surname: Xing
  fullname: Xing, Yongheng
  email: xingyh18@mails.jlu.edu.cn
  organization: College of Computer Science and Technology, Jilin University, Changchun, China
– sequence: 2
  givenname: Liang
  orcidid: 0000-0002-6077-1873
  surname: Hu
  fullname: Hu, Liang
  organization: College of Computer Science and Technology, Jilin University, Changchun, China
– sequence: 3
  givenname: Xinqi
  orcidid: 0000-0003-0195-6859
  surname: Du
  fullname: Du, Xinqi
  email: duxq18@mails.jlu.edu.cn
  organization: School of Artificial Intelligence, Jilin University, Changchun, China
– sequence: 4
  givenname: Zhiqi
  orcidid: 0000-0001-7626-7295
  surname: Shen
  fullname: Shen, Zhiqi
  email: zqshen@ntu.edu.sg
  organization: Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY) and the School of Computer Science and Engineering, Nanyang Technological University, Jurong West, Singapore
– sequence: 5
  givenname: Juncheng
  orcidid: 0000-0002-6232-9093
  surname: Hu
  fullname: Hu, Juncheng
  email: jchu@jlu.edu.cn
  organization: College of Computer Science and Technology, Jilin University, Changchun, China
– sequence: 6
  givenname: Feng
  orcidid: 0000-0002-0732-7343
  surname: Wang
  fullname: Wang, Feng
  email: feng_w@jlu.edu.cn
  organization: College of Computer Science and Technology, Jilin University, Changchun, China
BookMark eNp9kE1PwkAQhjdGExH5ASYeNvFc3K-21FtTBDFEONR4bLbLtCxCF7dL0H9vm3IgHrzs7CTPM5N5b9BlZSpA6I6SIaUkenydLdIhI0wMuaAj4UcXqMc4Cz0RBOzy7H-NBnW9IYQ0mk-joIfqJBlPvDRePuEYJ6Zy8O28-CgttF2x1crhMThQTpsKT6zcwdHYT1wYi2cmxanVZQnWiztgaU3ZMDtdlfhDuzWeWrlf4zc4WLltimvlW3RVyG0Ng1Pto_fJc5q8ePPFdJbEc0-xSLj2lX4U0UJwWVAIaR4pIDJnkBPq50CBiYJHeRgUuWK5zNUqFBR4uGpaLhXvo4du7t6arwPULtuYg62alRlvYhOjER-Jhgo7SllT1xaKTGkn22uclXqbUZK1IWdtyFkbcnYKuTHpH3Nv9U7an3-d-87RAHDG-yERhPBfmM6KOQ
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_JIOT_2025_3579920
crossref_primary_10_1016_j_neucom_2025_131529
crossref_primary_10_3390_app15094795
crossref_primary_10_3390_app15073727
crossref_primary_10_1145_3722231
Cites_doi 10.1109/TDSC.2022.3162312
10.1145/3629517
10.1145/3290605.3300782
10.1145/3597926.3598084
10.1109/SP40001.2021.00108
10.1609/aaai.v34i05.6510
10.1109/TSE.2022.3179294
10.1109/TASE.2022.3141590
10.1109/DSN48063.2020.00056
10.14722/ndss.2019.23326
10.1016/j.cose.2022.102812
10.1109/ICWS53863.2021.00048
10.1109/SP46215.2023.10179425
10.1109/TBDATA.2022.3177455
10.1109/TIFS.2019.2899758
10.1109/JIOT.2020.2978770
10.1109/TIFS.2022.3214084
10.1145/3319535.3345662
10.48550/ARXIV.1609.02907
10.1109/JIOT.2022.3222615
10.1109/ICSE.2019.00043
10.1145/3485730.3494115
10.1145/3569506
10.1109/TASE.2018.2789658
10.1609/aaai.v31i1.11164
10.1145/3460319.3464838
10.3115/v1/D14-1162
10.1145/2556288.2557420
10.14722/ndss.2021.24368
10.1145/3057861
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2024.3418459
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 31544
ExternalDocumentID 10_1109_JIOT_2024_3418459
10570400
Genre orig-research
GrantInformation_xml – fundername: Talent Project of Department of Science and Technology of Jilin Province of China
  grantid: 20240602106RC
– fundername: Central University Basic Scientific Research Fund
  grantid: 2023-JCXK-04
– fundername: Science and Technology Development Plan of Jilin Province of China
  grantid: 20220101115JC
– fundername: Project of Jilin Province Development, and Reform Commission
  grantid: 2019FGWTZC001
– fundername: National Key Research and Development Plan of China
  grantid: 2017YFA0604500
  funderid: 10.13039/501100012166
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-c29a5991f43af1e71b9ce0ab2eb015be1e24f39b76fbc2babcd741e37dbc23ac3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001322588600043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Mon Jun 30 15:49:29 EDT 2025
Sat Nov 29 01:44:06 EST 2025
Tue Nov 18 22:42:22 EST 2025
Wed Aug 27 01:53:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 19
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-c29a5991f43af1e71b9ce0ab2eb015be1e24f39b76fbc2babcd741e37dbc23ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0732-7343
0000-0001-7626-7295
0000-0002-6232-9093
0000-0002-6077-1873
0000-0003-0195-6859
0000-0003-4980-1813
PQID 3109488384
PQPubID 2040421
PageCount 11
ParticipantIDs ieee_primary_10570400
proquest_journals_3109488384
crossref_citationtrail_10_1109_JIOT_2024_3418459
crossref_primary_10_1109_JIOT_2024_3418459
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref34
ref15
ref14
Devlin (ref28) 2018
ref31
ref30
ref11
ref10
ref32
ref2
Fu (ref13)
ref1
ref17
ref16
ref19
Veličković (ref36) 2017
Salehi (ref38) 2019
Chi (ref18)
ref24
ref23
ref26
ref25
ref20
Ramos (ref33); 242
Kipf (ref37) 2016
ref22
ref21
Mikolov (ref29) 2013
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – year: 2019
  ident: ref38
  article-title: Graph attention auto-encoders
  publication-title: arXiv:1905.10715
– ident: ref8
  doi: 10.1109/TDSC.2022.3162312
– ident: ref12
  doi: 10.1145/3629517
– ident: ref5
  doi: 10.1145/3290605.3300782
– ident: ref17
  doi: 10.1145/3597926.3598084
– ident: ref6
  doi: 10.1109/SP40001.2021.00108
– ident: ref31
  doi: 10.1609/aaai.v34i05.6510
– ident: ref22
  doi: 10.1109/TSE.2022.3179294
– ident: ref2
  doi: 10.1109/TASE.2022.3141590
– ident: ref19
  doi: 10.1109/DSN48063.2020.00056
– ident: ref21
  doi: 10.14722/ndss.2019.23326
– ident: ref10
  doi: 10.1016/j.cose.2022.102812
– ident: ref26
  doi: 10.1109/ICWS53863.2021.00048
– ident: ref7
  doi: 10.1109/SP46215.2023.10179425
– ident: ref32
  doi: 10.1109/TBDATA.2022.3177455
– ident: ref20
  doi: 10.1109/TIFS.2019.2899758
– ident: ref3
  doi: 10.1109/JIOT.2020.2978770
– ident: ref16
  doi: 10.1109/TIFS.2022.3214084
– start-page: 1559
  volume-title: Proc. 32nd USENIX Security Symp. (USENIX Security)
  ident: ref18
  article-title: Detecting and handling IoT interaction threats in multi-platform multi-control-channel smart homes
– ident: ref11
  doi: 10.1145/3319535.3345662
– year: 2013
  ident: ref29
  article-title: Efficient estimation of word representations in vector space
  publication-title: arXiv:1301.3781
– year: 2017
  ident: ref36
  article-title: Graph attention networks
  publication-title: arXiv:1710.10903
– ident: ref35
  doi: 10.48550/ARXIV.1609.02907
– year: 2018
  ident: ref28
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: arXiv:1810.04805
– ident: ref15
  doi: 10.1109/JIOT.2022.3222615
– ident: ref23
  doi: 10.1109/ICSE.2019.00043
– ident: ref34
  doi: 10.1145/3485730.3494115
– ident: ref9
  doi: 10.1145/3569506
– ident: ref1
  doi: 10.1109/TASE.2018.2789658
– ident: ref27
  doi: 10.1609/aaai.v31i1.11164
– volume: 242
  start-page: 29
  volume-title: Proc. 1st Instruct. Conf. Mach. Learn.
  ident: ref33
  article-title: Using TF-IDF to determine word relevance in document queries
– year: 2016
  ident: ref37
  article-title: Variational graph auto-encoders
  publication-title: arXiv:1611.07308
– ident: ref14
  doi: 10.1145/3460319.3464838
– start-page: 4223
  volume-title: Proc. 30th USENIX Security Symp. (USENIX Security)
  ident: ref13
  article-title: HAWatcher: Semantics-aware anomaly detection for appified smart homes
– ident: ref30
  doi: 10.3115/v1/D14-1162
– ident: ref4
  doi: 10.1145/2556288.2557420
– ident: ref24
  doi: 10.14722/ndss.2021.24368
– ident: ref25
  doi: 10.1145/3057861
SSID ssj0001105196
Score 2.351896
Snippet The rapid expansion of the Internet of Things (IoT) has led to the development of smart homes and automation systems. Trigger-action programming (TAP) has...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 31534
SubjectTerms Algorithms
Automation
Conflict detection
Context
Data mining
graph neural network (GNN)
Graph neural networks
Internet of Things
Internet of Things (IoT)
Programming
Security
Smart buildings
Smart homes
Smart houses
trigger-action programming (TAP)
Title CCDF-TAP: A Context-Aware Conflict Detection Framework for IoT Trigger-Action Programming With Graph Neural Network
URI https://ieeexplore.ieee.org/document/10570400
https://www.proquest.com/docview/3109488384
Volume 11
WOSCitedRecordID wos001322588600043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-UePAifmBE0fTgyWSwrWVj3hYQxRjkMJXbsnZvkUTBwNB_3_e6oSRGEy_LmrRLs1_b93uv74Oxc6RACrUK38LVlFrSy7QVKCVQVRFIDrzMTkwdssc7fzjsjMfBqAxWN7EwAGCcz6BJr-YuP53pJZnKWlSTlhbdJtv0fa8I1vo2qDjERrzy5tKxg9bt4D5CDdCVTTyqO5LSka7JHlNM5ccJbMRKv_rPCe2ynZI_8rAAfI9twHSfVVe1GXi5VQ_Yotvt9a0oHF3ykJsUVKjhhh_JHKhlIkF4D3LjiDXl_ZWLFkcOyweziEeotZO9Lyw6jAo3rlcUdPxpkj_za0p0zSm1B85mWPiS19hD_yrq3lhlgQVLu4HM6Zm0kSBmUiSZA76jAg12olxQyBIUOODKTATK9zKlXZUonSIBAeGn2BSJFoesMp1N4YhxqUCk0HFIH5ICJaADnqdk6kFmBzpt15m9-vWxLrOPUxGMl9hoIXYQE1oxoRWXaNXZxdeQtyL1xl-dawTPWscCmTprrACOy925iCkbKh5coiOPfxl2wrbp64XXXoNV8vkSTtmWfs8ni_mZWXifr2DWoA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6VFAkuUF4iPNo99FTJwfZu7Lg3KyElJU1zMI-b5V2P1UglQYkDf78zaweQUJG4WF5pV1752935ZnYeAF-JAmnSKkKHVlPuqKAwTqS1JFVFEjkICjezdciuh-Fo1Lm9jcZ1sLqNhUFE63yGLX61d_n5zCzZVHbGNWl50a3Bx7ZSvluFaz2bVDzmI0F9d-m50dnPwe-EdEBfteiw7ihOSPpC-thyKq_OYCtY-tvvnNIn2KoZpIgryHfgA053YXtVnUHUm3UPFt1ur-8k8fi7iIVNQkU6bvyYzZFbNhZE9LC0rlhT0V85aQlisWIwS0RCejtb_OKqw7hy5LojUSduJuUf8YNTXQtO7kGzGVXe5Ptw1T9PuhdOXWLBMX6kSn5mbaKIhZJZ4WHo6cigm2kfNfEEjR76qpCRDoNCG19n2uREQVCGOTVlZuQBNKazKR6CUBpljh2PNSIlSQZ6GARa5QEWbmTydhPc1a9PTZ1_nMtg_E2tHuJGKaOVMlppjVYTvj0Nua-Sb7zVeZ_hedGxQqYJJyuA03p_LlLOh0pHl-yoo_8M-wIbF8mvYTocjC6PYZO_VPnwnUCjnC_xFNbNQzlZzD_bRfgP_vzZ5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CCDF-TAP%3A+A+Context-Aware+Conflict+Detection+Framework+for+IoT+Trigger-Action+Programming+With+Graph+Neural+Network&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Xing%2C+Yongheng&rft.au=Hu%2C+Liang&rft.au=Du%2C+Xinqi&rft.au=Shen%2C+Zhiqi&rft.date=2024-10-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=11&rft.issue=19&rft.spage=31534&rft.epage=31544&rft_id=info:doi/10.1109%2FJIOT.2024.3418459&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2024_3418459
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon