Deconvolutive Improved S Transform and Its Application in Hydrocarbon Detection
Seismic signals are usually non-linear and non-stationary. The Fourier transform based on stationary signal processing theory cannot depict the frequency components at any moment. However, the time-frequency analysis (TFA) methods have the capability of describing the partial features of signal both...
Uloženo v:
| Vydáno v: | IEEE transactions on geoscience and remote sensing Ročník 61; s. 1 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Seismic signals are usually non-linear and non-stationary. The Fourier transform based on stationary signal processing theory cannot depict the frequency components at any moment. However, the time-frequency analysis (TFA) methods have the capability of describing the partial features of signal both in time and frequency domains. S transform (ST), as a common TFA method, has great TF combination characteristics, but the changing trend of the window function is fixed and the TF resolution cannot be adjusted. In addition, for seismic signals, the peaks of the frequency distribution in the TF spectrum biases the actual Fourier spectrum, which will affect the accuracy of data analysis. Therefore, we propose a new TFA method called the deconvolutive improved S transform (DIST). The DIST introduces one parameter to the window function other than multiple parameters to improve the flexibility in the application process. The normalization factor is also removed from the window function to avoid the frequency bias. Moreover, the deconvolution in DIST can further improve the accuracy of TF representation. Comparison of the TFA results of synthetic seismic signals shows that the DIST has better TF resolution and energy aggregation than other TFA methods in this paper. By adding different degrees of noise to synthetic seismic signals, we conclude that DIST has better noise robustness. Finally, we apply DIST to different field data for hydrocarbon detection, and the results are basically consistent with the drilling data. |
|---|---|
| AbstractList | Seismic signals are usually non-linear and non-stationary. The Fourier transform based on stationary signal processing theory cannot depict the frequency components at any moment. However, the time-frequency analysis (TFA) methods have the capability of describing the partial features of signal both in time and frequency domains. S transform (ST), as a common TFA method, has great TF combination characteristics, but the changing trend of the window function is fixed and the TF resolution cannot be adjusted. In addition, for seismic signals, the peaks of the frequency distribution in the TF spectrum biases the actual Fourier spectrum, which will affect the accuracy of data analysis. Therefore, we propose a new TFA method called the deconvolutive improved S transform (DIST). The DIST introduces one parameter to the window function other than multiple parameters to improve the flexibility in the application process. The normalization factor is also removed from the window function to avoid the frequency bias. Moreover, the deconvolution in DIST can further improve the accuracy of TF representation. Comparison of the TFA results of synthetic seismic signals shows that the DIST has better TF resolution and energy aggregation than other TFA methods in this paper. By adding different degrees of noise to synthetic seismic signals, we conclude that DIST has better noise robustness. Finally, we apply DIST to different field data for hydrocarbon detection, and the results are basically consistent with the drilling data. Seismic signals are usually nonlinear and nonstationary. The Fourier transform (FT) based on stationary signal processing theory cannot depict the frequency components at any moment. However, the time–frequency analysis (TFA) methods have the capability of describing the partial features of signal both in time and frequency domains. S transform (ST), as a common TFA method, has great time–frequency (TF) combination characteristics, but the changing trend of the window function is fixed and the TF resolution cannot be adjusted. In addition, for seismic signals, the peaks of the frequency distribution in the TF spectrum bias the actual Fourier spectrum, which will affect the accuracy of data analysis. Therefore, we propose a new TFA method called the deconvolutive improved S transform (DIST). The DIST introduces one parameter to the window function other than multiple parameters to improve the flexibility in the application process. The normalization factor is also removed from the window function to avoid the frequency bias. Moreover, the deconvolution in DIST can further improve the accuracy of TF representation. The comparison of the TFA results of synthetic seismic signals shows that the DIST has better TF resolution and energy aggregation than other TFA methods in this article. By adding different degrees of noise to synthetic seismic signals, we conclude that DIST has better noise robustness. Finally, we apply DIST to different field data for hydrocarbon detection, and the results are basically consistent with the drilling data. |
| Author | He, Bingshou Wu, Xuefeng Zhang, Huixing |
| Author_xml | – sequence: 1 givenname: Xuefeng orcidid: 0000-0001-7424-783X surname: Wu fullname: Wu, Xuefeng organization: Ministry of Education, The Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ocean University of China, Qingdao, China – sequence: 2 givenname: Huixing orcidid: 0000-0002-4446-6959 surname: Zhang fullname: Zhang, Huixing organization: Ministry of Education, The Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ocean University of China, Qingdao, China – sequence: 3 givenname: Bingshou orcidid: 0000-0001-7192-9130 surname: He fullname: He, Bingshou organization: Ministry of Education, The Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ocean University of China, Qingdao, China |
| BookMark | eNp9kE1rAjEQhkNpoWr7Awo9BHpem-9NjqKtCoJQ7Tlks1lYWRObrIL_vrvVQ-mhlxmGmWfemXcIbn3wDoAnjMYYI_W6nX9sxgQROqZESIb4DRhgzmWGBGO3YICwEhmRityDYUo7hDDjOB-A9czZ4E-hObb1ycHl_hDDyZVwA7fR-FSFuIfGl3DZJjg5HJramrYOHtYeLs5lDNbEoitnrnW2bzyAu8o0yT1e8wh8vr9tp4tstZ4vp5NVZolibRc5JSVnVBkhcGFyw5ghBScYEWwFopyWCilllGXYUlyKvBAFRYjRCitJ6Ai8XPZ2934dXWr1Lhyj7yQ1kUhJKbnKuyl8mbIxpBRdpQ-x3pt41hjp3jfd-6Z73_TVt47J_zC2bn-ebqOpm3_J5wtZO-d-KWHEBWH0G1bqe5w |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_TGRS_2025_3526690 |
| Cites_doi | 10.1109/78.482123 10.1109/RAST.2007.4284083 10.1190/geo2017-0145.1 10.1109/LGRS.2020.2993596 10.1086/111605 10.1109/18.57199 10.1190/geo2015-0489.1 10.1190/segam2013-0931.1 10.1016/j.ymssp.2015.09.004 10.1109/18.923723 10.1109/TSP.2013.2288675 10.1109/TGRS.2019.2916792 10.1016/S0031-9201(97)00047-2 10.1109/ICRAIE51050.2020.9358363 10.1103/PhysRev.40.749 10.1109/TDEI.2016.005910 10.1109/LGRS.2020.2994135 10.1109/78.492555 10.1109/LGRS.2020.3009259 10.1109/LGRS.2017.2778045 10.1190/geo2016-0679.1 10.1098/rspa.1998.0193 10.1109/TGRS.2015.2466660 10.1109/TIE.2014.2355816 10.1109/TGRS.2017.2730228 10.1111/j.1365-2478.2012.01062.x 10.1109/LGRS.2020.3043047 10.1109/LGRS.2020.3047892 10.1109/TGRS.2017.2772037 10.1109/TGRS.2020.2989403 10.1190/geo2020-0298.1 10.1109/TGRS.2021.3132649 10.1190/INT-2016-0006.1 10.1109/LGRS.2017.2656158 10.1109/TIE.2013.2288192 10.1109/LSP.2009.2027651 10.1109/ICEAA.2010.5652980 10.1109/ICASSP.2011.5947265 10.1109/LSP.2009.2020887 10.1109/LGRS.2014.2317578 10.1364/JOSA.62.000055 10.1109/LGRS.2018.2829340 10.1109/LGRS.2019.2931138 10.1109/TIE.2017.2696503 10.1109/TGRS.2017.2755666 10.1142/S1793536909000047 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2023.3268405 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TGRS_2023_3268405 10105624 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42274149 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 Y6R 5VS AAYXX AETIX AGSQL AI. AIBXA CITATION EJD H~9 IBMZZ ICLAB IFJZH VH1 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c294t-c2532d5439a661ba7a44a2b521021c60353d9099a9c41c31d67b6b30043f19823 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000982478600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Tue Aug 12 16:41:08 EDT 2025 Sat Nov 29 03:32:21 EST 2025 Tue Nov 18 22:43:34 EST 2025 Wed Aug 27 02:21:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-c2532d5439a661ba7a44a2b521021c60353d9099a9c41c31d67b6b30043f19823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7424-783X 0000-0001-7192-9130 0000-0002-4446-6959 |
| PQID | 2809888597 |
| PQPubID | 85465 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_10105624 proquest_journals_2809888597 crossref_primary_10_1109_TGRS_2023_3268405 crossref_citationtrail_10_1109_TGRS_2023_3268405 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 chen (ref37) 2009; 52 ref14 ref11 huang (ref32) 2018; 53 ref10 ref17 ref16 ref19 ref18 lu (ref48) 2009; 16 ref50 ref46 ref45 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 cohen (ref33) 1995 ref6 ref40 liu (ref5) 2005 ref35 ref34 ref36 ref31 ref30 ref2 ref1 ref39 ref38 zhang (ref51) 2010; 45 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref26 doi: 10.1109/78.482123 – ident: ref4 doi: 10.1109/RAST.2007.4284083 – ident: ref47 doi: 10.1190/geo2017-0145.1 – ident: ref19 doi: 10.1109/LGRS.2020.2993596 – ident: ref50 doi: 10.1086/111605 – ident: ref34 doi: 10.1109/18.57199 – year: 1995 ident: ref33 publication-title: Time-Frequency Analysis – ident: ref12 doi: 10.1190/geo2015-0489.1 – start-page: 2675 year: 2005 ident: ref5 article-title: Self spectrum window method in Wigner-Ville distribution publication-title: Proc IEEE Eng Med Biol 27th Annu Conf – ident: ref38 doi: 10.1190/segam2013-0931.1 – ident: ref27 doi: 10.1016/j.ymssp.2015.09.004 – ident: ref46 doi: 10.1109/18.923723 – ident: ref11 doi: 10.1109/TSP.2013.2288675 – ident: ref40 doi: 10.1109/TGRS.2019.2916792 – ident: ref36 doi: 10.1016/S0031-9201(97)00047-2 – ident: ref42 doi: 10.1109/ICRAIE51050.2020.9358363 – ident: ref3 doi: 10.1103/PhysRev.40.749 – ident: ref30 doi: 10.1109/TDEI.2016.005910 – ident: ref45 doi: 10.1109/LGRS.2020.2994135 – ident: ref35 doi: 10.1109/78.492555 – ident: ref25 doi: 10.1109/LGRS.2020.3009259 – ident: ref39 doi: 10.1109/LGRS.2017.2778045 – ident: ref44 doi: 10.1190/geo2016-0679.1 – ident: ref8 doi: 10.1098/rspa.1998.0193 – ident: ref20 doi: 10.1109/TGRS.2015.2466660 – ident: ref1 doi: 10.1109/TIE.2014.2355816 – ident: ref18 doi: 10.1109/TGRS.2017.2730228 – volume: 52 start-page: 215 year: 2009 ident: ref37 article-title: Low frequency shadow detection of gas reservoir s in time-frequency domain publication-title: Chin J Geophys – ident: ref29 doi: 10.1111/j.1365-2478.2012.01062.x – volume: 45 start-page: 343 year: 2010 ident: ref51 article-title: Utilizing attenuation characteristic of seismic wave in dual-phase medium to detect oil and gas publication-title: Oil Geophys Prospecting – ident: ref22 doi: 10.1109/LGRS.2020.3043047 – ident: ref21 doi: 10.1109/LGRS.2020.3047892 – ident: ref14 doi: 10.1109/TGRS.2017.2772037 – ident: ref28 doi: 10.1109/TGRS.2020.2989403 – ident: ref31 doi: 10.1190/geo2020-0298.1 – ident: ref43 doi: 10.1109/TGRS.2021.3132649 – ident: ref16 doi: 10.1190/INT-2016-0006.1 – ident: ref13 doi: 10.1109/LGRS.2017.2656158 – ident: ref2 doi: 10.1109/TIE.2013.2288192 – ident: ref6 doi: 10.1109/LSP.2009.2027651 – ident: ref7 doi: 10.1109/ICEAA.2010.5652980 – volume: 53 start-page: 957 year: 2018 ident: ref32 article-title: Comparison of linear and nonlinear time-frequency analysis on seismic signals publication-title: Oil Geophys Prospecting – ident: ref10 doi: 10.1109/ICASSP.2011.5947265 – volume: 16 start-page: 576 year: 2009 ident: ref48 article-title: Deconvolutive short-time Fourier transform spectrogram publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2009.2020887 – ident: ref15 doi: 10.1109/LGRS.2014.2317578 – ident: ref49 doi: 10.1364/JOSA.62.000055 – ident: ref17 doi: 10.1109/LGRS.2018.2829340 – ident: ref24 doi: 10.1109/LGRS.2019.2931138 – ident: ref23 doi: 10.1109/TIE.2017.2696503 – ident: ref41 doi: 10.1109/TGRS.2017.2755666 – ident: ref9 doi: 10.1142/S1793536909000047 |
| SSID | ssj0014517 |
| Score | 2.439763 |
| Snippet | Seismic signals are usually non-linear and non-stationary. The Fourier transform based on stationary signal processing theory cannot depict the frequency... Seismic signals are usually nonlinear and nonstationary. The Fourier transform (FT) based on stationary signal processing theory cannot depict the frequency... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Aggregation Bias Data analysis Data processing Deconvolution Detection Drilling Energy resolution Fourier transforms Frequency analysis frequency correction Frequency dependence Frequency distribution hydrocarbon detection Hydrocarbons improved S transform (IST) Methods Noise robustness Parameters Resolution Signal processing Signal resolution Time-frequency analysis time–frequency analysis (TFA) Transforms Window functions |
| Title | Deconvolutive Improved S Transform and Its Application in Hydrocarbon Detection |
| URI | https://ieeexplore.ieee.org/document/10105624 https://www.proquest.com/docview/2809888597 |
| Volume | 61 |
| WOSCitedRecordID | wos000982478600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD64oaAPXubE6ZQ8-CR0tk3TNo_DOSfIFDdlbyW3wUA62bqB_94kzXQiCr6UFpJSzqUn37kCXNBARSa467FxpAEKkYFHlUo94jOemkCMsEP7Xu6Tfj8djeijK1a3tTBKKZt8plrm1sby5VQsjKtMa7iZEx9GFagkSVwWa32GDCISuNro2NMoInQhzMCnV8Pbp0HLzAlvYdvchHwzQnaqyo9fsbUv3b1_ftk-7LqDJGqXnD-ADZXXYGetvWANtmx6p5gfwkPH4N6lFbOlQqUnQUk0QMPVwRWxXKK7Yo7aXyFtNMlR711qG8dmXD92VGEzt_I6PHdvhtc9z41S8ERIo0JfCQ4l0acPpg0yZwmLIhZyYgBfIGIfEyypZg2jIgoEDmSc8Jibblx4HNA0xEdQzae5OgYkKY9FQlM6Tg0pU8Ylw0qrsvKpzzBrgL-ibSZcn3Ez7uI1s3jDp5lhR2bYkTl2NODyc8tb2WTjr8V1Q_-1hSXpG9BccTBzejjPQi1vGuNr1HTyy7ZT2DZvL70qTagWs4U6g02xLCbz2bkVsQ9XN8tQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oVNSDH3PidGoOnoTOtkm65jjUueGc4qbsVtIkg4F0snUD_3uTtJsTUfBSWkhoeR99-b1PgAvmKWKCuw4fEA1QqPQcplToUJfHoQnECDu077Vd63TCfp895cXqthZGKWWTz1TV3NpYvhyJqXGVaQ03c-J9sgprlBDfzcq1FkEDQr28OjpwNI7w8yCm57Kr3t1zt2omhVexbW9Cv5khO1flx8_YWpjG7j-_bQ928qMkqme834cVlRRhe6nBYBE2bIKnmBzA441BvjMraDOFMl-CkqiLevOjK-KJRK10gupfQW00TFDzQ2orx8exfrxRqc3dSkrw0rjtXTedfJiCI3xGUn2l2JdUnz-4Nskxr3FCuB9TA_k8EbiYYsk0czgTxBPYk0EtDmLTjwsPPBb6-BAKyShRR4AkiwNRYyEbhIaUIY8lx0ors3KZyzEvgzunbSTyTuNm4MVbZBGHyyLDjsiwI8rZUYbLxZb3rM3GX4tLhv5LCzPSl6Ey52CUa-Ik8rXEaZSvcdPxL9vOYbPZe2hH7Vbn_gS2zJsyH0sFCul4qk5hXczS4WR8ZsXtExczzpc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deconvolutive+Improved+S+Transform+and+Its+Application+in+Hydrocarbon+Detection&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wu%2C+Xuefeng&rft.au=Zhang%2C+Huixing&rft.au=He%2C+Bingshou&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0196-2892&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTGRS.2023.3268405&rft.externalDocID=10105624 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |