Deconvolutive Improved S Transform and Its Application in Hydrocarbon Detection

Seismic signals are usually non-linear and non-stationary. The Fourier transform based on stationary signal processing theory cannot depict the frequency components at any moment. However, the time-frequency analysis (TFA) methods have the capability of describing the partial features of signal both...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 61; p. 1
Main Authors: Wu, Xuefeng, Zhang, Huixing, He, Bingshou
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Seismic signals are usually non-linear and non-stationary. The Fourier transform based on stationary signal processing theory cannot depict the frequency components at any moment. However, the time-frequency analysis (TFA) methods have the capability of describing the partial features of signal both in time and frequency domains. S transform (ST), as a common TFA method, has great TF combination characteristics, but the changing trend of the window function is fixed and the TF resolution cannot be adjusted. In addition, for seismic signals, the peaks of the frequency distribution in the TF spectrum biases the actual Fourier spectrum, which will affect the accuracy of data analysis. Therefore, we propose a new TFA method called the deconvolutive improved S transform (DIST). The DIST introduces one parameter to the window function other than multiple parameters to improve the flexibility in the application process. The normalization factor is also removed from the window function to avoid the frequency bias. Moreover, the deconvolution in DIST can further improve the accuracy of TF representation. Comparison of the TFA results of synthetic seismic signals shows that the DIST has better TF resolution and energy aggregation than other TFA methods in this paper. By adding different degrees of noise to synthetic seismic signals, we conclude that DIST has better noise robustness. Finally, we apply DIST to different field data for hydrocarbon detection, and the results are basically consistent with the drilling data.
AbstractList Seismic signals are usually non-linear and non-stationary. The Fourier transform based on stationary signal processing theory cannot depict the frequency components at any moment. However, the time-frequency analysis (TFA) methods have the capability of describing the partial features of signal both in time and frequency domains. S transform (ST), as a common TFA method, has great TF combination characteristics, but the changing trend of the window function is fixed and the TF resolution cannot be adjusted. In addition, for seismic signals, the peaks of the frequency distribution in the TF spectrum biases the actual Fourier spectrum, which will affect the accuracy of data analysis. Therefore, we propose a new TFA method called the deconvolutive improved S transform (DIST). The DIST introduces one parameter to the window function other than multiple parameters to improve the flexibility in the application process. The normalization factor is also removed from the window function to avoid the frequency bias. Moreover, the deconvolution in DIST can further improve the accuracy of TF representation. Comparison of the TFA results of synthetic seismic signals shows that the DIST has better TF resolution and energy aggregation than other TFA methods in this paper. By adding different degrees of noise to synthetic seismic signals, we conclude that DIST has better noise robustness. Finally, we apply DIST to different field data for hydrocarbon detection, and the results are basically consistent with the drilling data.
Seismic signals are usually nonlinear and nonstationary. The Fourier transform (FT) based on stationary signal processing theory cannot depict the frequency components at any moment. However, the time–frequency analysis (TFA) methods have the capability of describing the partial features of signal both in time and frequency domains. S transform (ST), as a common TFA method, has great time–frequency (TF) combination characteristics, but the changing trend of the window function is fixed and the TF resolution cannot be adjusted. In addition, for seismic signals, the peaks of the frequency distribution in the TF spectrum bias the actual Fourier spectrum, which will affect the accuracy of data analysis. Therefore, we propose a new TFA method called the deconvolutive improved S transform (DIST). The DIST introduces one parameter to the window function other than multiple parameters to improve the flexibility in the application process. The normalization factor is also removed from the window function to avoid the frequency bias. Moreover, the deconvolution in DIST can further improve the accuracy of TF representation. The comparison of the TFA results of synthetic seismic signals shows that the DIST has better TF resolution and energy aggregation than other TFA methods in this article. By adding different degrees of noise to synthetic seismic signals, we conclude that DIST has better noise robustness. Finally, we apply DIST to different field data for hydrocarbon detection, and the results are basically consistent with the drilling data.
Author He, Bingshou
Wu, Xuefeng
Zhang, Huixing
Author_xml – sequence: 1
  givenname: Xuefeng
  orcidid: 0000-0001-7424-783X
  surname: Wu
  fullname: Wu, Xuefeng
  organization: Ministry of Education, The Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ocean University of China, Qingdao, China
– sequence: 2
  givenname: Huixing
  orcidid: 0000-0002-4446-6959
  surname: Zhang
  fullname: Zhang, Huixing
  organization: Ministry of Education, The Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ocean University of China, Qingdao, China
– sequence: 3
  givenname: Bingshou
  orcidid: 0000-0001-7192-9130
  surname: He
  fullname: He, Bingshou
  organization: Ministry of Education, The Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ocean University of China, Qingdao, China
BookMark eNp9kE1rAjEQhkNpoWr7Awo9BHpem-9NjqKtCoJQ7Tlks1lYWRObrIL_vrvVQ-mhlxmGmWfemXcIbn3wDoAnjMYYI_W6nX9sxgQROqZESIb4DRhgzmWGBGO3YICwEhmRityDYUo7hDDjOB-A9czZ4E-hObb1ycHl_hDDyZVwA7fR-FSFuIfGl3DZJjg5HJramrYOHtYeLs5lDNbEoitnrnW2bzyAu8o0yT1e8wh8vr9tp4tstZ4vp5NVZolibRc5JSVnVBkhcGFyw5ghBScYEWwFopyWCilllGXYUlyKvBAFRYjRCitJ6Ai8XPZ2934dXWr1Lhyj7yQ1kUhJKbnKuyl8mbIxpBRdpQ-x3pt41hjp3jfd-6Z73_TVt47J_zC2bn-ebqOpm3_J5wtZO-d-KWHEBWH0G1bqe5w
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2025_3526690
Cites_doi 10.1109/78.482123
10.1109/RAST.2007.4284083
10.1190/geo2017-0145.1
10.1109/LGRS.2020.2993596
10.1086/111605
10.1109/18.57199
10.1190/geo2015-0489.1
10.1190/segam2013-0931.1
10.1016/j.ymssp.2015.09.004
10.1109/18.923723
10.1109/TSP.2013.2288675
10.1109/TGRS.2019.2916792
10.1016/S0031-9201(97)00047-2
10.1109/ICRAIE51050.2020.9358363
10.1103/PhysRev.40.749
10.1109/TDEI.2016.005910
10.1109/LGRS.2020.2994135
10.1109/78.492555
10.1109/LGRS.2020.3009259
10.1109/LGRS.2017.2778045
10.1190/geo2016-0679.1
10.1098/rspa.1998.0193
10.1109/TGRS.2015.2466660
10.1109/TIE.2014.2355816
10.1109/TGRS.2017.2730228
10.1111/j.1365-2478.2012.01062.x
10.1109/LGRS.2020.3043047
10.1109/LGRS.2020.3047892
10.1109/TGRS.2017.2772037
10.1109/TGRS.2020.2989403
10.1190/geo2020-0298.1
10.1109/TGRS.2021.3132649
10.1190/INT-2016-0006.1
10.1109/LGRS.2017.2656158
10.1109/TIE.2013.2288192
10.1109/LSP.2009.2027651
10.1109/ICEAA.2010.5652980
10.1109/ICASSP.2011.5947265
10.1109/LSP.2009.2020887
10.1109/LGRS.2014.2317578
10.1364/JOSA.62.000055
10.1109/LGRS.2018.2829340
10.1109/LGRS.2019.2931138
10.1109/TIE.2017.2696503
10.1109/TGRS.2017.2755666
10.1142/S1793536909000047
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2023.3268405
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2023_3268405
10105624
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42274149
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
Y6R
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-c2532d5439a661ba7a44a2b521021c60353d9099a9c41c31d67b6b30043f19823
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000982478600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Tue Aug 12 16:41:08 EDT 2025
Sat Nov 29 03:32:21 EST 2025
Tue Nov 18 22:43:34 EST 2025
Wed Aug 27 02:21:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-c2532d5439a661ba7a44a2b521021c60353d9099a9c41c31d67b6b30043f19823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7424-783X
0000-0001-7192-9130
0000-0002-4446-6959
PQID 2809888597
PQPubID 85465
PageCount 1
ParticipantIDs ieee_primary_10105624
proquest_journals_2809888597
crossref_primary_10_1109_TGRS_2023_3268405
crossref_citationtrail_10_1109_TGRS_2023_3268405
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
chen (ref37) 2009; 52
ref14
ref11
huang (ref32) 2018; 53
ref10
ref17
ref16
ref19
ref18
lu (ref48) 2009; 16
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
cohen (ref33) 1995
ref6
ref40
liu (ref5) 2005
ref35
ref34
ref36
ref31
ref30
ref2
ref1
ref39
ref38
zhang (ref51) 2010; 45
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref26
  doi: 10.1109/78.482123
– ident: ref4
  doi: 10.1109/RAST.2007.4284083
– ident: ref47
  doi: 10.1190/geo2017-0145.1
– ident: ref19
  doi: 10.1109/LGRS.2020.2993596
– ident: ref50
  doi: 10.1086/111605
– ident: ref34
  doi: 10.1109/18.57199
– year: 1995
  ident: ref33
  publication-title: Time-Frequency Analysis
– ident: ref12
  doi: 10.1190/geo2015-0489.1
– start-page: 2675
  year: 2005
  ident: ref5
  article-title: Self spectrum window method in Wigner-Ville distribution
  publication-title: Proc IEEE Eng Med Biol 27th Annu Conf
– ident: ref38
  doi: 10.1190/segam2013-0931.1
– ident: ref27
  doi: 10.1016/j.ymssp.2015.09.004
– ident: ref46
  doi: 10.1109/18.923723
– ident: ref11
  doi: 10.1109/TSP.2013.2288675
– ident: ref40
  doi: 10.1109/TGRS.2019.2916792
– ident: ref36
  doi: 10.1016/S0031-9201(97)00047-2
– ident: ref42
  doi: 10.1109/ICRAIE51050.2020.9358363
– ident: ref3
  doi: 10.1103/PhysRev.40.749
– ident: ref30
  doi: 10.1109/TDEI.2016.005910
– ident: ref45
  doi: 10.1109/LGRS.2020.2994135
– ident: ref35
  doi: 10.1109/78.492555
– ident: ref25
  doi: 10.1109/LGRS.2020.3009259
– ident: ref39
  doi: 10.1109/LGRS.2017.2778045
– ident: ref44
  doi: 10.1190/geo2016-0679.1
– ident: ref8
  doi: 10.1098/rspa.1998.0193
– ident: ref20
  doi: 10.1109/TGRS.2015.2466660
– ident: ref1
  doi: 10.1109/TIE.2014.2355816
– ident: ref18
  doi: 10.1109/TGRS.2017.2730228
– volume: 52
  start-page: 215
  year: 2009
  ident: ref37
  article-title: Low frequency shadow detection of gas reservoir s in time-frequency domain
  publication-title: Chin J Geophys
– ident: ref29
  doi: 10.1111/j.1365-2478.2012.01062.x
– volume: 45
  start-page: 343
  year: 2010
  ident: ref51
  article-title: Utilizing attenuation characteristic of seismic wave in dual-phase medium to detect oil and gas
  publication-title: Oil Geophys Prospecting
– ident: ref22
  doi: 10.1109/LGRS.2020.3043047
– ident: ref21
  doi: 10.1109/LGRS.2020.3047892
– ident: ref14
  doi: 10.1109/TGRS.2017.2772037
– ident: ref28
  doi: 10.1109/TGRS.2020.2989403
– ident: ref31
  doi: 10.1190/geo2020-0298.1
– ident: ref43
  doi: 10.1109/TGRS.2021.3132649
– ident: ref16
  doi: 10.1190/INT-2016-0006.1
– ident: ref13
  doi: 10.1109/LGRS.2017.2656158
– ident: ref2
  doi: 10.1109/TIE.2013.2288192
– ident: ref6
  doi: 10.1109/LSP.2009.2027651
– ident: ref7
  doi: 10.1109/ICEAA.2010.5652980
– volume: 53
  start-page: 957
  year: 2018
  ident: ref32
  article-title: Comparison of linear and nonlinear time-frequency analysis on seismic signals
  publication-title: Oil Geophys Prospecting
– ident: ref10
  doi: 10.1109/ICASSP.2011.5947265
– volume: 16
  start-page: 576
  year: 2009
  ident: ref48
  article-title: Deconvolutive short-time Fourier transform spectrogram
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2009.2020887
– ident: ref15
  doi: 10.1109/LGRS.2014.2317578
– ident: ref49
  doi: 10.1364/JOSA.62.000055
– ident: ref17
  doi: 10.1109/LGRS.2018.2829340
– ident: ref24
  doi: 10.1109/LGRS.2019.2931138
– ident: ref23
  doi: 10.1109/TIE.2017.2696503
– ident: ref41
  doi: 10.1109/TGRS.2017.2755666
– ident: ref9
  doi: 10.1142/S1793536909000047
SSID ssj0014517
Score 2.439763
Snippet Seismic signals are usually non-linear and non-stationary. The Fourier transform based on stationary signal processing theory cannot depict the frequency...
Seismic signals are usually nonlinear and nonstationary. The Fourier transform (FT) based on stationary signal processing theory cannot depict the frequency...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Aggregation
Bias
Data analysis
Data processing
Deconvolution
Detection
Drilling
Energy resolution
Fourier transforms
Frequency analysis
frequency correction
Frequency dependence
Frequency distribution
hydrocarbon detection
Hydrocarbons
improved S transform (IST)
Methods
Noise robustness
Parameters
Resolution
Signal processing
Signal resolution
Time-frequency analysis
time–frequency analysis (TFA)
Transforms
Window functions
Title Deconvolutive Improved S Transform and Its Application in Hydrocarbon Detection
URI https://ieeexplore.ieee.org/document/10105624
https://www.proquest.com/docview/2809888597
Volume 61
WOSCitedRecordID wos000982478600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4oaAHP-bE6ZQcPAmdTZukzXE45wSZ4ibsVtIkg4F0snUD_3uTtJsTUfBSUkhKeS_Je7_3CXClqRHDgnKPqZh7hOGxx4m2vV5CysdKx0y6ROHHqN-PRyP-XCaru1wYrbULPtMtO3S-fDWVC2sqMyfc9okPSAUqUcSKZK21y4BQXOZGM8-giKB0YWKf3wzvXwYt2ye8FbriJvSbEHJdVX5cxU6-dA_--WeHsF8qkqhdcP4ItnRWg72N8oI12HHhnXJ-DE8di3uXbpstNSosCVqhARquFFckMoUe8jlqf7m00SRDvQ9lZJyYpea1o3MXuZXV4bV7N7zteWUrBU8GnOTmScNAUaN9CCOQUxEJQkSQUgv4sGSGMaHiRlkUXBIsQ6xYlLLUVuMKx5jHQXgC1Wya6VNAPhZKiojHTCjCiLm449SPAjrWIVFK4gb4K9omsqwzbttdvCUOb_g8sexILDuSkh0NuF4veS-KbPw1uW7pvzGxIH0DmisOJuU5nCdB7HOD8Q1qOvtl2Tns2q8XVpUmVPPZQl_Atlzmk_ns0m2xTwQzzEU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54RX3wOnFe8-CT0NmkSdo8ircN5xSd4FtJkwwG0slWB_57k7Sbiij4UlJIaDknyTnfuQIcG2bFsGQi4DoRAeW4FwhqXK-XiImeNglXPlG4HXc6yfOzuK-S1X0ujDHGB5-Zhht6X74eqDdnKrMn3PWJJ3QW5hmlJCzTtaZOA8pwlR3NA4sjSOXExKE47V4_PDZcp_BG5MubsG9iyPdV-XEZewlztfbPf1uH1UqVRGcl7zdgxuSbsPKlwOAmLPoATzXagrsLh3zHfqONDSptCUajR9SdqK5I5hq1ihE6-3Rqo36Omu_aSjk5zOzrhSl87FZeg6ery-55M6iaKQSKCFrYJ4uIZlb_kFYkZzKWlEqSMQf5sOKWNZEWVl2UQlGsIqx5nPHM1eOKelgkJNqGuXyQmx1AIZZayVgkXGrKqb26kyyMCeuZiGqtcB3CCW1TVVUadw0vXlKPOEKROnakjh1pxY46nEyXvJZlNv6aXHP0_zKxJH0d9iccTKuTOEpJEgqL8i1u2v1l2REsNbu37bTd6tzswbL7Umlj2Ye5YvhmDmBBjYv-aHjot9sH0IrPjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deconvolutive+Improved+S+Transform+and+Its+Application+in+Hydrocarbon+Detection&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wu%2C+Xuefeng&rft.au=Zhang%2C+Huixing&rft.au=He%2C+Bingshou&rft.date=2023-01-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=61&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTGRS.2023.3268405&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2023_3268405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon