Fault detection for lithium-ion batteries of electric vehicles with spatio-temporal autoencoder

Fault detection of lithium-ion battery packs is crucial for the safe operation of electric vehicles. Autoencoder, as an advanced machine learning method, has significant potential for improving anomaly detection accuracy. However, the autoencoders that just use temporal features in the reconstructio...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 392; p. 125933
Main Authors: Li, Heng, Liu, Zhijun, Bin Kaleem, Muaaz, Duan, Lijun, Ruan, Siqi, Liu, Weirong
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.08.2025
Subjects:
ISSN:0306-2619
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fault detection of lithium-ion battery packs is crucial for the safe operation of electric vehicles. Autoencoder, as an advanced machine learning method, has significant potential for improving anomaly detection accuracy. However, the autoencoders that just use temporal features in the reconstruction process are suffered from high false positive rate. In this paper, a spatio-temporal autoencoder is proposed to address this limitation by learning the complex time dependence of time series data while considering inconsistencies within the battery pack. Meanwhile, a multi-head attention mechanism is introduced to the autoencoder to fuse temporal and spatial information to better learn the dynamic features of the battery charging time-series. Finally, we propose a two-stage fault detection method that first detects the faulty battery pack and then locates the faulty cell based on a dynamic threshold. Experimental results demonstrate the effectiveness of the proposed spatio-temporal autoencoder. It achieves the value of 0.961 on F1-score and is able to warn of faults a month in advance, accurately locating the faulty cell. •A spatio-temporal autoencoder for battery fault detection is proposed.•A multi-attention mechanism is introduced to integrate spatio-temporal information.•The two-stage fault detection method can significantly reduce the false positive rate compared to traditional method.
AbstractList Fault detection of lithium-ion battery packs is crucial for the safe operation of electric vehicles. Autoencoder, as an advanced machine learning method, has significant potential for improving anomaly detection accuracy. However, the autoencoders that just use temporal features in the reconstruction process are suffered from high false positive rate. In this paper, a spatio-temporal autoencoder is proposed to address this limitation by learning the complex time dependence of time series data while considering inconsistencies within the battery pack. Meanwhile, a multi-head attention mechanism is introduced to the autoencoder to fuse temporal and spatial information to better learn the dynamic features of the battery charging time-series. Finally, we propose a two-stage fault detection method that first detects the faulty battery pack and then locates the faulty cell based on a dynamic threshold. Experimental results demonstrate the effectiveness of the proposed spatio-temporal autoencoder. It achieves the value of 0.961 on F1-score and is able to warn of faults a month in advance, accurately locating the faulty cell.
Fault detection of lithium-ion battery packs is crucial for the safe operation of electric vehicles. Autoencoder, as an advanced machine learning method, has significant potential for improving anomaly detection accuracy. However, the autoencoders that just use temporal features in the reconstruction process are suffered from high false positive rate. In this paper, a spatio-temporal autoencoder is proposed to address this limitation by learning the complex time dependence of time series data while considering inconsistencies within the battery pack. Meanwhile, a multi-head attention mechanism is introduced to the autoencoder to fuse temporal and spatial information to better learn the dynamic features of the battery charging time-series. Finally, we propose a two-stage fault detection method that first detects the faulty battery pack and then locates the faulty cell based on a dynamic threshold. Experimental results demonstrate the effectiveness of the proposed spatio-temporal autoencoder. It achieves the value of 0.961 on F1-score and is able to warn of faults a month in advance, accurately locating the faulty cell. •A spatio-temporal autoencoder for battery fault detection is proposed.•A multi-attention mechanism is introduced to integrate spatio-temporal information.•The two-stage fault detection method can significantly reduce the false positive rate compared to traditional method.
ArticleNumber 125933
Author Liu, Zhijun
Duan, Lijun
Ruan, Siqi
Li, Heng
Liu, Weirong
Bin Kaleem, Muaaz
Author_xml – sequence: 1
  givenname: Heng
  orcidid: 0000-0001-5592-7004
  surname: Li
  fullname: Li, Heng
  organization: School of Electronic Information, Central South University, Changsha 410083, China
– sequence: 2
  givenname: Zhijun
  orcidid: 0009-0002-5326-6243
  surname: Liu
  fullname: Liu, Zhijun
  organization: School of Electronic Information, Central South University, Changsha 410083, China
– sequence: 3
  givenname: Muaaz
  orcidid: 0000-0002-0277-7214
  surname: Bin Kaleem
  fullname: Bin Kaleem, Muaaz
  organization: School of Electronic Information, Central South University, Changsha 410083, China
– sequence: 4
  givenname: Lijun
  surname: Duan
  fullname: Duan, Lijun
  organization: School of Computer Science and Engineering, Central South University, Changsha 410083, China
– sequence: 5
  givenname: Siqi
  orcidid: 0000-0002-8543-7521
  surname: Ruan
  fullname: Ruan, Siqi
  organization: School of Electronic Information, Central South University, Changsha 410083, China
– sequence: 6
  givenname: Weirong
  surname: Liu
  fullname: Liu, Weirong
  email: frat@csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University, Changsha 410083, China
BookMark eNqFkDtPwzAUhT0UiRb4CygjS8K182o2UEUBqRILzJbtXFNXSRxsp6j_HleBmek-dM6Rzrcii8EOSMgthYwCre4PmRhxQPd5yhiwMqOsbPJ8QZaQQ5WyijaXZOX9AQAYZbAkfCumLiQtBlTB2CHR1iWdCXsz9en5liIEdAZ9YnWCXVQ5o5Ij7o3q4vM7ShM_iuhNA_ajdaJLxBQsDsq26K7JhRadx5vfeUU-tk_vm5d09_b8unncpYo1RUil1pTWUlJkgAhMQgFSI0Na11QpIRtsWlqupVQAGspGrXOhGi2grOJO8ytyN-eOzn5N6APvjVfYdWJAO3mes4JBXRRriNJqlipnvXeo-ehML9yJU-BnivzA_yjyM0U-U4zGh9mIscjRoONemdgTW-MiF95a81_EDzQjhSU
Cites_doi 10.1002/adma.202101474
10.1016/j.est.2023.110381
10.1016/j.apenergy.2022.120312
10.1016/j.rser.2021.110790
10.1016/j.apenergy.2023.121650
10.1109/TSG.2016.2621135
10.1016/j.energy.2022.126496
10.1016/j.est.2022.105909
10.1016/j.jpowsour.2023.233474
10.1109/TPEL.2022.3150026
10.1016/j.asoc.2022.109903
10.1016/j.energy.2022.126027
10.1016/j.etran.2023.100254
10.1016/j.rser.2022.112282
10.1016/j.apenergy.2022.118588
10.1002/aenm.202300368
10.1016/j.rser.2023.114224
10.1016/j.apenergy.2013.05.048
10.1016/j.ins.2022.11.139
10.1016/j.est.2022.106196
10.1109/TII.2020.3011441
10.1016/j.energy.2021.121652
10.1016/j.apenergy.2023.121949
10.1016/j.rser.2021.111240
10.1016/j.rser.2021.111903
10.1109/TPEL.2020.3008194
10.1016/j.apenergy.2023.120841
10.1016/j.pecs.2023.101142
10.1109/TMECH.2023.3234770
10.1109/TPEL.2022.3211568
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2025.125933
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID 10_1016_j_apenergy_2025_125933
S0306261925006634
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
~HD
9DU
AAQXK
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c294t-bff117bb1e20ee02b040bfe2e1771ccab9e9d158bbc00f059c83ac9fa0569c813
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001486079200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Fri Nov 14 18:42:42 EST 2025
Thu Nov 27 01:01:20 EST 2025
Wed Dec 10 14:23:39 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Battery pack
Inconsistency
Two-stage fault detection method
Spatio-temporal autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-bff117bb1e20ee02b040bfe2e1771ccab9e9d158bbc00f059c83ac9fa0569c813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0002-5326-6243
0000-0002-0277-7214
0000-0001-5592-7004
0000-0002-8543-7521
PQID 3242074480
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3242074480
crossref_primary_10_1016_j_apenergy_2025_125933
elsevier_sciencedirect_doi_10_1016_j_apenergy_2025_125933
PublicationCentury 2000
PublicationDate 2025-08-15
PublicationDateYYYYMMDD 2025-08-15
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sun, He, Lin, Cai, Cai, Gao (bib0120) 2023; 132
Zhao, Feng, Wang, Lian, Ouyang, Burke (bib0155) 2023; 352
Zhou, Chen, Lin (bib0065) 2022; 38
Yu, Wang, Li, Xiong, Pecht (bib0040) 2023; 17
Lv, Zhou, Zhong, Yan, Srinivasan, Seh (bib0160) 2022; 34
Li, Chen, Yang, Shu, Liu, Peng (bib0130) 2024; 82
Wang, Zhang, Xu, Liu (bib0145) 2016; 9
Li, Zhang, Liu, Wang, Zhang (bib0095) 2020; 36
Ikotun, Ezugwu, Abualigah, Abuhaija, Heming (bib0140) 2023; 622
Li, Liu, Zhang, Zhang, Deng, Wang (bib0100) 2022; 37
Zheng, Ouyang, Lu, Li, Han, Xu (bib0165) 2013; 111
Zhang, Wang, Jiang, He, Huang, Wang (bib0125) 2023; 14
Zhang, Wei, Tang, Zhu, Chen, Dai (bib0015) 2021; 141
Zhang, Jiang, Deng, Xie, Couture, Lin (bib0035) 2023; 28
Zhang, Li, Luo, Fan, Du (bib0005) 2022; 238
Yuan, Cui, Li, Cui, Chang (bib0105) 2023; 57
Zhao, Feng, Pang, Wang, Lian, Ouyang (bib0090) 2023; 581
Zhang, Liu, Wang, Zhang (bib0055) 2022; 239
Zhang, Liu, Lin, Zhang, Wang (bib0115) 2023; 330
Wang, Chen, Zhang, Zhu (bib0110) 2023; 336
Khaleghi, Hosen, Van Mierlo, Berecibar (bib0070) 2024; 192
Jia, Gao, Ma, Xu (bib0020) 2023; 13
Li, Zhang, Zhang, Liu, Deng, Wang (bib0135) 2023; 284
Christensen, Anderson, Harper, Lambert, Mrozik, Rajaeifar (bib0010) 2021; 148
Yu, Dai, Xiong, Chen, Zhang, Shen (bib0050) 2022; 310
Zhang, Li (bib0085) 2022; 161
Jiang, Zhang, Wu, Chang, Jiang (bib0060) 2022; 56
Li, Zhou, Zhang, Liu, Zhang (bib0025) 2023; 263
Yang, Zhang (bib0150) 2020; 17
Zhao, Chen, Shu, Shen, Liu, Zhang (bib0045) 2023; 266
Rauf, Khalid, Arshad (bib0075) 2022; 156
Zhao, Feng, Pang, Fowler, Lian, Ouyang (bib0080) 2024; 102
Yang, Cheng, Liu, Duodu, Zhang (bib0030) 2023; 349
Yu (10.1016/j.apenergy.2025.125933_bib0040) 2023; 17
Li (10.1016/j.apenergy.2025.125933_bib0135) 2023; 284
Li (10.1016/j.apenergy.2025.125933_bib0025) 2023; 263
Rauf (10.1016/j.apenergy.2025.125933_bib0075) 2022; 156
Yang (10.1016/j.apenergy.2025.125933_bib0150) 2020; 17
Li (10.1016/j.apenergy.2025.125933_bib0130) 2024; 82
Lv (10.1016/j.apenergy.2025.125933_bib0160) 2022; 34
Christensen (10.1016/j.apenergy.2025.125933_bib0010) 2021; 148
Li (10.1016/j.apenergy.2025.125933_bib0095) 2020; 36
Zhang (10.1016/j.apenergy.2025.125933_bib0125) 2023; 14
Ikotun (10.1016/j.apenergy.2025.125933_bib0140) 2023; 622
Zhang (10.1016/j.apenergy.2025.125933_bib0015) 2021; 141
Sun (10.1016/j.apenergy.2025.125933_bib0120) 2023; 132
Yu (10.1016/j.apenergy.2025.125933_bib0050) 2022; 310
Zhao (10.1016/j.apenergy.2025.125933_bib0045) 2023; 266
Jiang (10.1016/j.apenergy.2025.125933_bib0060) 2022; 56
Zhou (10.1016/j.apenergy.2025.125933_bib0065) 2022; 38
Wang (10.1016/j.apenergy.2025.125933_bib0145) 2016; 9
Zhang (10.1016/j.apenergy.2025.125933_bib0115) 2023; 330
Zhang (10.1016/j.apenergy.2025.125933_bib0055) 2022; 239
Wang (10.1016/j.apenergy.2025.125933_bib0110) 2023; 336
Zheng (10.1016/j.apenergy.2025.125933_bib0165) 2013; 111
Jia (10.1016/j.apenergy.2025.125933_bib0020) 2023; 13
Zhao (10.1016/j.apenergy.2025.125933_bib0090) 2023; 581
Zhao (10.1016/j.apenergy.2025.125933_bib0155) 2023; 352
Yuan (10.1016/j.apenergy.2025.125933_bib0105) 2023; 57
Yang (10.1016/j.apenergy.2025.125933_bib0030) 2023; 349
Zhang (10.1016/j.apenergy.2025.125933_bib0005) 2022; 238
Zhang (10.1016/j.apenergy.2025.125933_bib0035) 2023; 28
Zhang (10.1016/j.apenergy.2025.125933_bib0085) 2022; 161
Li (10.1016/j.apenergy.2025.125933_bib0100) 2022; 37
Khaleghi (10.1016/j.apenergy.2025.125933_bib0070) 2024; 192
Zhao (10.1016/j.apenergy.2025.125933_bib0080) 2024; 102
References_xml – volume: 161
  year: 2022
  ident: bib0085
  article-title: Prognostics and health management of lithium-ion battery using deep learning methods: a review
  publication-title: Renew Sustain Energy Rev
– volume: 36
  start-page: 1303
  year: 2020
  end-page: 1315
  ident: bib0095
  article-title: Battery fault diagnosis for electric vehicles based on voltage abnormality by combining the long short-term memory neural network and the equivalent circuit model
  publication-title: IEEE Trans Power Electron
– volume: 581
  year: 2023
  ident: bib0090
  article-title: Battery prognostics and health management from a machine learning perspective
  publication-title: J Power Sources
– volume: 349
  year: 2023
  ident: bib0030
  article-title: A novel semi-supervised fault detection and isolation method for battery system of electric vehicles
  publication-title: Appl Energy
– volume: 284
  year: 2023
  ident: bib0135
  article-title: Battery safety issue detection in real-world electric vehicles by integrated modeling and voltage abnormality
  publication-title: Energy
– volume: 37
  start-page: 8513
  year: 2022
  end-page: 8525
  ident: bib0100
  article-title: Battery thermal runaway fault prognosis in electric vehicles based on abnormal heat generation and deep learning algorithms
  publication-title: IEEE Trans Power Electron
– volume: 17
  year: 2023
  ident: bib0040
  article-title: Challenges and outlook for lithium-ion battery fault diagnosis methods from the laboratory to real world applications
  publication-title: eTransportation
– volume: 13
  year: 2023
  ident: bib0020
  article-title: Comprehensive battery safety risk evaluation: aged cells versus fresh cells upon mechanical abusive loadings
  publication-title: Adv Energy Mater
– volume: 14
  year: 2023
  ident: bib0125
  article-title: Realistic fault detection of li-ion battery via dynamical deep learning
  publication-title: Nat Commun
– volume: 238
  year: 2022
  ident: bib0005
  article-title: A review on thermal management of lithium-ion batteries for electric vehicles
  publication-title: Energy
– volume: 336
  year: 2023
  ident: bib0110
  article-title: Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering
  publication-title: Appl Energy
– volume: 352
  year: 2023
  ident: bib0155
  article-title: Battery fault diagnosis and failure prognosis for electric vehicles using spatio-temporal transformer networks
  publication-title: Appl Energy
– volume: 622
  start-page: 178
  year: 2023
  end-page: 210
  ident: bib0140
  article-title: K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data
  publication-title: Inf Sci
– volume: 192
  year: 2024
  ident: bib0070
  article-title: Towards machine-learning driven prognostics and health management of li-ion batteries. A comprehensive review
  publication-title: Renew Sustain Energy Rev
– volume: 132
  year: 2023
  ident: bib0120
  article-title: Anomaly detection of power battery pack using gated recurrent units based variational autoencoder
  publication-title: Appl Soft Comput
– volume: 9
  start-page: 2824
  year: 2016
  end-page: 2833
  ident: bib0145
  article-title: Wind turbine blade breakage monitoring with deep autoencoders
  publication-title: IEEE Trans Smart Grid
– volume: 28
  start-page: 644
  year: 2023
  end-page: 655
  ident: bib0035
  article-title: An early soft internal short-circuit fault diagnosis method for lithium-ion battery packs in electric vehicles
  publication-title: IEEE/ASME Trans Mechatron
– volume: 38
  start-page: 2493
  year: 2022
  end-page: 2505
  ident: bib0065
  article-title: Lithium-ion battery cell open circuit fault diagnostics: methods, analysis, and comparison
  publication-title: IEEE Trans Power Electron
– volume: 17
  start-page: 6390
  year: 2020
  end-page: 6398
  ident: bib0150
  article-title: A conditional convolutional autoencoder-based method for monitoring wind turbine blade breakages
  publication-title: IEEE Trans Ind Inf
– volume: 102
  year: 2024
  ident: bib0080
  article-title: Battery safety: machine learning-based prognostics
  publication-title: Prog Energy Combust Sci
– volume: 239
  year: 2022
  ident: bib0055
  article-title: State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression
  publication-title: Energy
– volume: 148
  year: 2021
  ident: bib0010
  article-title: Risk management over the life cycle of lithium-ion batteries in electric vehicles
  publication-title: Renew Sustain Energy Rev
– volume: 263
  year: 2023
  ident: bib0025
  article-title: Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse
  publication-title: Energy
– volume: 111
  start-page: 571
  year: 2013
  end-page: 580
  ident: bib0165
  article-title: Cell state-of-charge inconsistency estimation for LiFePO
  publication-title: Appl Energy
– volume: 141
  year: 2021
  ident: bib0015
  article-title: Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: a review
  publication-title: Renew Sustain Energy Rev
– volume: 266
  year: 2023
  ident: bib0045
  article-title: Multi-step ahead voltage prediction and voltage fault diagnosis based on gated recurrent unit neural network and incremental training
  publication-title: Energy
– volume: 56
  year: 2022
  ident: bib0060
  article-title: A fault diagnosis method for electric vehicle power lithium battery based on wavelet packet decomposition
  publication-title: J Energy Storage
– volume: 156
  year: 2022
  ident: bib0075
  article-title: Machine learning in state of health and remaining useful life estimation: theoretical and technological development in battery degradation modelling
  publication-title: Renew Sustain Energy Rev
– volume: 310
  year: 2022
  ident: bib0050
  article-title: Current sensor fault diagnosis method based on an improved equivalent circuit battery model
  publication-title: Appl Energy
– volume: 82
  year: 2024
  ident: bib0130
  article-title: Adversarial learning for robust battery thermal runaway prognostic of electric vehicles
  publication-title: J Energy Storage
– volume: 34
  year: 2022
  ident: bib0160
  article-title: Machine learning: an advanced platform for materials development and state prediction in lithium-ion batteries
  publication-title: Adv Mater
– volume: 57
  year: 2023
  ident: bib0105
  article-title: Early stage internal short circuit fault diagnosis for lithium-ion batteries based on local-outlier detection
  publication-title: J Energy Storage
– volume: 330
  year: 2023
  ident: bib0115
  article-title: A novel battery abnormality detection method using interpretable autoencoder
  publication-title: Appl Energy
– volume: 14
  issue: 1
  year: 2023
  ident: 10.1016/j.apenergy.2025.125933_bib0125
  article-title: Realistic fault detection of li-ion battery via dynamical deep learning
  publication-title: Nat Commun
– volume: 34
  issue: 25
  year: 2022
  ident: 10.1016/j.apenergy.2025.125933_bib0160
  article-title: Machine learning: an advanced platform for materials development and state prediction in lithium-ion batteries
  publication-title: Adv Mater
  doi: 10.1002/adma.202101474
– volume: 82
  year: 2024
  ident: 10.1016/j.apenergy.2025.125933_bib0130
  article-title: Adversarial learning for robust battery thermal runaway prognostic of electric vehicles
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.110381
– volume: 330
  year: 2023
  ident: 10.1016/j.apenergy.2025.125933_bib0115
  article-title: A novel battery abnormality detection method using interpretable autoencoder
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120312
– volume: 141
  year: 2021
  ident: 10.1016/j.apenergy.2025.125933_bib0015
  article-title: Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.110790
– volume: 239
  year: 2022
  ident: 10.1016/j.apenergy.2025.125933_bib0055
  article-title: State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression
  publication-title: Energy
– volume: 349
  year: 2023
  ident: 10.1016/j.apenergy.2025.125933_bib0030
  article-title: A novel semi-supervised fault detection and isolation method for battery system of electric vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121650
– volume: 9
  start-page: 2824
  issue: 4
  year: 2016
  ident: 10.1016/j.apenergy.2025.125933_bib0145
  article-title: Wind turbine blade breakage monitoring with deep autoencoders
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2621135
– volume: 266
  year: 2023
  ident: 10.1016/j.apenergy.2025.125933_bib0045
  article-title: Multi-step ahead voltage prediction and voltage fault diagnosis based on gated recurrent unit neural network and incremental training
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126496
– volume: 56
  year: 2022
  ident: 10.1016/j.apenergy.2025.125933_bib0060
  article-title: A fault diagnosis method for electric vehicle power lithium battery based on wavelet packet decomposition
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.105909
– volume: 581
  year: 2023
  ident: 10.1016/j.apenergy.2025.125933_bib0090
  article-title: Battery prognostics and health management from a machine learning perspective
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2023.233474
– volume: 37
  start-page: 8513
  issue: 7
  year: 2022
  ident: 10.1016/j.apenergy.2025.125933_bib0100
  article-title: Battery thermal runaway fault prognosis in electric vehicles based on abnormal heat generation and deep learning algorithms
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2022.3150026
– volume: 132
  year: 2023
  ident: 10.1016/j.apenergy.2025.125933_bib0120
  article-title: Anomaly detection of power battery pack using gated recurrent units based variational autoencoder
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109903
– volume: 263
  year: 2023
  ident: 10.1016/j.apenergy.2025.125933_bib0025
  article-title: Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126027
– volume: 17
  year: 2023
  ident: 10.1016/j.apenergy.2025.125933_bib0040
  article-title: Challenges and outlook for lithium-ion battery fault diagnosis methods from the laboratory to real world applications
  publication-title: eTransportation
  doi: 10.1016/j.etran.2023.100254
– volume: 161
  year: 2022
  ident: 10.1016/j.apenergy.2025.125933_bib0085
  article-title: Prognostics and health management of lithium-ion battery using deep learning methods: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112282
– volume: 310
  year: 2022
  ident: 10.1016/j.apenergy.2025.125933_bib0050
  article-title: Current sensor fault diagnosis method based on an improved equivalent circuit battery model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118588
– volume: 284
  year: 2023
  ident: 10.1016/j.apenergy.2025.125933_bib0135
  article-title: Battery safety issue detection in real-world electric vehicles by integrated modeling and voltage abnormality
  publication-title: Energy
– volume: 13
  issue: 24
  year: 2023
  ident: 10.1016/j.apenergy.2025.125933_bib0020
  article-title: Comprehensive battery safety risk evaluation: aged cells versus fresh cells upon mechanical abusive loadings
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202300368
– volume: 192
  year: 2024
  ident: 10.1016/j.apenergy.2025.125933_bib0070
  article-title: Towards machine-learning driven prognostics and health management of li-ion batteries. A comprehensive review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2023.114224
– volume: 111
  start-page: 571
  year: 2013
  ident: 10.1016/j.apenergy.2025.125933_bib0165
  article-title: Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.05.048
– volume: 622
  start-page: 178
  year: 2023
  ident: 10.1016/j.apenergy.2025.125933_bib0140
  article-title: K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.11.139
– volume: 57
  year: 2023
  ident: 10.1016/j.apenergy.2025.125933_bib0105
  article-title: Early stage internal short circuit fault diagnosis for lithium-ion batteries based on local-outlier detection
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.106196
– volume: 17
  start-page: 6390
  issue: 9
  year: 2020
  ident: 10.1016/j.apenergy.2025.125933_bib0150
  article-title: A conditional convolutional autoencoder-based method for monitoring wind turbine blade breakages
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2020.3011441
– volume: 238
  year: 2022
  ident: 10.1016/j.apenergy.2025.125933_bib0005
  article-title: A review on thermal management of lithium-ion batteries for electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121652
– volume: 352
  year: 2023
  ident: 10.1016/j.apenergy.2025.125933_bib0155
  article-title: Battery fault diagnosis and failure prognosis for electric vehicles using spatio-temporal transformer networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121949
– volume: 148
  year: 2021
  ident: 10.1016/j.apenergy.2025.125933_bib0010
  article-title: Risk management over the life cycle of lithium-ion batteries in electric vehicles
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.111240
– volume: 156
  year: 2022
  ident: 10.1016/j.apenergy.2025.125933_bib0075
  article-title: Machine learning in state of health and remaining useful life estimation: theoretical and technological development in battery degradation modelling
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.111903
– volume: 36
  start-page: 1303
  issue: 2
  year: 2020
  ident: 10.1016/j.apenergy.2025.125933_bib0095
  article-title: Battery fault diagnosis for electric vehicles based on voltage abnormality by combining the long short-term memory neural network and the equivalent circuit model
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2020.3008194
– volume: 336
  year: 2023
  ident: 10.1016/j.apenergy.2025.125933_bib0110
  article-title: Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.120841
– volume: 102
  year: 2024
  ident: 10.1016/j.apenergy.2025.125933_bib0080
  article-title: Battery safety: machine learning-based prognostics
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2023.101142
– volume: 28
  start-page: 644
  issue: 2
  year: 2023
  ident: 10.1016/j.apenergy.2025.125933_bib0035
  article-title: An early soft internal short-circuit fault diagnosis method for lithium-ion battery packs in electric vehicles
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2023.3234770
– volume: 38
  start-page: 2493
  issue: 2
  year: 2022
  ident: 10.1016/j.apenergy.2025.125933_bib0065
  article-title: Lithium-ion battery cell open circuit fault diagnostics: methods, analysis, and comparison
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2022.3211568
SSID ssj0002120
Score 2.4737206
Snippet Fault detection of lithium-ion battery packs is crucial for the safe operation of electric vehicles. Autoencoder, as an advanced machine learning method, has...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 125933
SubjectTerms Battery pack
energy
Inconsistency
lithium batteries
spatial data
Spatio-temporal autoencoder
time series analysis
Two-stage fault detection method
Title Fault detection for lithium-ion batteries of electric vehicles with spatio-temporal autoencoder
URI https://dx.doi.org/10.1016/j.apenergy.2025.125933
https://www.proquest.com/docview/3242074480
Volume 392
WOSCitedRecordID wos001486079200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002120
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg4wAHBIOJMUBG4lalxE7SxMeBOvGlicOQeots50VNtaXVmkwTf_2eYzsN5XMHLlFqJc7H-_W9n533fibkDSugUDGwYCojGcRpwQOJYSjAwQYv4xSKCDoR1y_p6Wk2n4uvbk530y0nkNZ1dn0t1v_V1NiGxjals7cwd98pNuA-Gh23aHbc_pPhT2R73owLaED3eYTItRdVexGY36pT1Kys2KxdBafS4ytYdAlyLme9y7MOnG7V-Vi2zcooXhYul9fL1joKC10BYZ_bYxfCBhcTu5a2-wiyqJZtD8Z3VT3-jOEJ7KRsK-X3Lat2FRH98W5egidmotVWZvp6rHAamPHZ0NdGduE75y2RXAkrg_GTI7dzCsuJXNtHmJhLTLYn_KicvRPR-jxDn8K2zH0_ueknt_3cJXs8TUQ2InvHH2fzT30E507O0z_BoLL813f0O1KzE947znL2iDx0gw16bEHymNyBep88GEhQ7pOD2bbSEQ91rn7zhOQdjmiPI4o4ogMc0R5HdFVSjyPqcUQNjugOjugAR0_Jt5PZ2fsPgVuNI9BcxE2gypKxVCkGPAQIuUL3r0rgwNKUoR9QAkTBkkwpHYYlsnadRVKLUiLFxn0WHZBRvarhGaHI2VVWaDlNAEwnstBqKhNgXJciKZND8ta_znxtRVfyP5vykAj_1nNHHS0lzBFQfz33tTdTjr7VfDCTNazaTW4GG0ix4yx8fus7OiL3t_-KF2TUXLbwktzTV021uXzlEHcDz2Ok8A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+detection+for+lithium-ion+batteries+of+electric+vehicles+with+spatio-temporal+autoencoder&rft.jtitle=Applied+energy&rft.au=Li%2C+Heng&rft.au=Liu%2C+Zhijun&rft.au=Bin+Kaleem%2C+Muaaz&rft.au=Duan%2C+Lijun&rft.date=2025-08-15&rft.issn=0306-2619&rft.volume=392&rft.spage=125933&rft_id=info:doi/10.1016%2Fj.apenergy.2025.125933&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2025_125933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon