A Thermal Displacement Prediction System with an Automatic LRGTVAC-PSO Optimized Branch Structured Bidirectional GRU Neural Network
Considering technology's rapid development, traditional manufacturing methods are insufficient to achieve the high accuracy demanded by aerospace, national defense, and numerous leading-edge engineering projects. Thermal displacement is a significant source of manufacturing errors, and accurate...
Uloženo v:
| Vydáno v: | IEEE sensors journal Ročník 23; číslo 12; s. 1 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
15.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Considering technology's rapid development, traditional manufacturing methods are insufficient to achieve the high accuracy demanded by aerospace, national defense, and numerous leading-edge engineering projects. Thermal displacement is a significant source of manufacturing errors, and accurately correcting such errors is difficult or even impossible using traditional machining methods. This paper proposes a machine learning method for high-accuracy error prediction that nonprofessionals can easily implement. An optimized automatic Logistic Random Generator Time Varying Acceleration Coefficient Particle Swarm Optimization (LRGTVAC-PSO) method is proposed to optimize a branch structured bidirectional Gated Recurrent Unit (GRU) neural network. The accuracy of the proposed method (with a three-axis average of 0.945) is superior to that of the other optimized algorithms evaluated in this study. The method serves as a means not only of accurately predicting thermal displacement but also of autotuning the hyperparameters of machine learning algorithms. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1530-437X 1558-1748 |
| DOI: | 10.1109/JSEN.2023.3269064 |