A Thermal Displacement Prediction System with an Automatic LRGTVAC-PSO Optimized Branch Structured Bidirectional GRU Neural Network

Considering technology's rapid development, traditional manufacturing methods are insufficient to achieve the high accuracy demanded by aerospace, national defense, and numerous leading-edge engineering projects. Thermal displacement is a significant source of manufacturing errors, and accurate...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE sensors journal Ročník 23; číslo 12; s. 1
Hlavní autoři: Kuo, Ping-Huan, Chen, Yen-Wen, Hsieh, Tung-Hsien, Jywe, Wen-Yuh, Yau, Her-Terng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 15.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1530-437X, 1558-1748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Considering technology's rapid development, traditional manufacturing methods are insufficient to achieve the high accuracy demanded by aerospace, national defense, and numerous leading-edge engineering projects. Thermal displacement is a significant source of manufacturing errors, and accurately correcting such errors is difficult or even impossible using traditional machining methods. This paper proposes a machine learning method for high-accuracy error prediction that nonprofessionals can easily implement. An optimized automatic Logistic Random Generator Time Varying Acceleration Coefficient Particle Swarm Optimization (LRGTVAC-PSO) method is proposed to optimize a branch structured bidirectional Gated Recurrent Unit (GRU) neural network. The accuracy of the proposed method (with a three-axis average of 0.945) is superior to that of the other optimized algorithms evaluated in this study. The method serves as a means not only of accurately predicting thermal displacement but also of autotuning the hyperparameters of machine learning algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2023.3269064