A higher-order time integration algorithm for the simulation of nonlinear fluid–structure interaction
In this paper higher-order time integration schemes are applied to nonlinear fluid–structure interaction (FSI) simulations. For a given accuracy, we investigate the efficiency of higher-order time integration schemes compared to lower-order methods. In the partitioned FSI simulations on a one-dimens...
Uloženo v:
| Vydáno v: | Nonlinear analysis Ročník 63; číslo 5; s. e1597 - e1605 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
30.11.2005
|
| Témata: | |
| ISSN: | 0362-546X, 1873-5215 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper higher-order time integration schemes are applied to nonlinear fluid–structure interaction (FSI) simulations. For a given accuracy, we investigate the efficiency of higher-order time integration schemes compared to lower-order methods. In the partitioned FSI simulations on a one-dimensional piston problem, a mixed implicit/explicit (IMEX) time integration scheme is employed: the implicit scheme is used to integrate the fluid and structural dynamics, whereas an explicit Runge–Kutta scheme integrates the coupling terms. The resulting IMEX scheme retains the order of the implicit and explicit schemes. In the IMEX scheme considered, the implicit scheme consists of an explicit first stage, singly diagonally implicit Runge–Kutta (ESDIRK) scheme, which is a multi-stage,
L-stable scheme. |
|---|---|
| ISSN: | 0362-546X 1873-5215 |
| DOI: | 10.1016/j.na.2005.01.054 |