Periodic Signal Recognition Technology Based on Framing Window Adaptive Scaling Algorithm and Trajectory Tracking Algorithm: A Case Study of Aerospace Loose Particle Detection Signal
In this paper, a novel algorithm combining adaptive scaling of framing windows and pulse trajectory tracking is proposed for the detection of internal loose particles in aerospace sealed electronic components. The proposed algorithm can be used to identify whether the detection signal has general or...
Uloženo v:
| Vydáno v: | IEEE sensors journal Ročník 23; číslo 14; s. 1 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
15.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, a novel algorithm combining adaptive scaling of framing windows and pulse trajectory tracking is proposed for the detection of internal loose particles in aerospace sealed electronic components. The proposed algorithm can be used to identify whether the detection signal has general or local periodicity, and to distinguish particle signals from component signals. The algorithm utilizes adaptive scaling of the framing windows length, which can effectively reduce the influence of the signal periodic instability caused by the change of the signal frequency. In order to evaluate the performance of the algorithm, 600 sets of data were collected on the Particle Impact Noise Detection platform. The single-component signal, loose particle signal, multi-component signal and mixed signal were verified respectively with the accurate rate close to 95%, and the recognition effect was great. In addition, compared with results using Fourier transform, the identification results of signal type using the proposed algorithm are more intuitive. |
|---|---|
| AbstractList | In this article, a novel algorithm combining adaptive scaling of framing windows and pulse trajectory tracking is proposed for the detection of internal loose particles in aerospace sealed electronic components. The proposed algorithm can be used to identify whether the detection signal has general or local periodicity and to distinguish particle signals from component signals. The algorithm uses adaptive scaling of the framing windows length, which can effectively reduce the influence of the signal periodic instability caused by the change of the signal frequency. In order to evaluate the performance of the algorithm, 600 sets of data were collected on the particle impact noise detection (PIND) platform. The single-component signal, loose particle signal, multicomponent signal, and mixed signal were verified, respectively, with the accurate rate close to 95%, and the recognition effect was great. In addition, compared with results using Fourier transform, the identification results of signal type using the proposed algorithm are more intuitive. In this paper, a novel algorithm combining adaptive scaling of framing windows and pulse trajectory tracking is proposed for the detection of internal loose particles in aerospace sealed electronic components. The proposed algorithm can be used to identify whether the detection signal has general or local periodicity, and to distinguish particle signals from component signals. The algorithm utilizes adaptive scaling of the framing windows length, which can effectively reduce the influence of the signal periodic instability caused by the change of the signal frequency. In order to evaluate the performance of the algorithm, 600 sets of data were collected on the Particle Impact Noise Detection platform. The single-component signal, loose particle signal, multi-component signal and mixed signal were verified respectively with the accurate rate close to 95%, and the recognition effect was great. In addition, compared with results using Fourier transform, the identification results of signal type using the proposed algorithm are more intuitive. |
| Author | Sun, Zhigang Han, Xiao Wang, Qiang Zhai, Guofu Li, Pengfei Wang, Guotao |
| Author_xml | – sequence: 1 givenname: Guofu orcidid: 0000-0003-1026-6024 surname: Zhai fullname: Zhai, Guofu – sequence: 2 givenname: Pengfei orcidid: 0000-0002-6282-6831 surname: Li fullname: Li, Pengfei – sequence: 3 givenname: Guotao surname: Wang fullname: Wang, Guotao – sequence: 4 givenname: Zhigang surname: Sun fullname: Sun, Zhigang – sequence: 5 givenname: Xiao surname: Han fullname: Han, Xiao – sequence: 6 givenname: Qiang surname: Wang fullname: Wang, Qiang |
| BookMark | eNp9kc1uEzEUhS1UJNrCAyCxsMR6Untsx2N2Q2j5UdRWJAh2I499Z-owsYPHocqL9fkYK10Aiy4sX917ztEnnTN04oMHhF5TMqOUqIsvq8vrWUlKNmNlRZRiz9ApFaIqqOTVSZ4ZKTiTP16gs3HcEEKVFPIUPdxCdME6g1eu93rAX8GE3rvkgsdrMHc-DKE_4Pd6BIun3VXUW-d7_N15G-5xbfUuud-AV0YPeV8PfYgu3W2x9havo96ASSEe8mh-_qN4h2u8mHLxKu3tAYcO1xDDuNMG8DKE6XCrY3JmAPwB0hSTmY6YL9HzTg8jvHr8z9G3q8v14lOxvPn4eVEvC1MqnorWStURxWjbamqVMFUp5nNRya5V2gjDBdCOdZZIWlECJZ-e5S23mnTKUMbO0dtj7i6GX3sYU7MJ-zgBjE1ZMUlZNWdZJY8qM-GPEbrGuKQzboraDQ0lTS6pySU1uaTmsaTJSf9z7qLb6nh40vPm6HEA8Jeeci54xf4AR-KicQ |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1016_j_compag_2024_108948 crossref_primary_10_1109_TIM_2025_3547476 crossref_primary_10_1016_j_engappai_2024_109529 |
| Cites_doi | 10.1109/IRPS.1974.362624 10.1016/j.neucom.2017.02.045 10.1109/IMCCC.2015.97 10.1109/JSEN.2019.2945364 10.1109/JSEN.2021.3139135 10.1016/j.ymssp.2022.109603 10.3390/s22093566 10.1177/0142331214538277 10.1109/JSEN.2022.3187109 10.1016/j.trc.2018.03.001 10.1016/j.ymssp.2019.106587 10.1109/IRPS.1972.362525 10.1109/TII.2018.2864759 10.1016/j.knosys.2020.105845 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2023.3280993 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_JSEN_2023_3280993 10144548 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities of Heilongjiang Province grantid: No. 2020-KYYWF-1006 – fundername: Natural Science Foundation of Heilongjiang Province grantid: Nos. QC2017059 and JJ2020LH1310 funderid: 10.13039/501100005046 – fundername: National Natural Science Foundation of China grantid: No. 51607059 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c294t-bd79f0931bba1d95c82566587fb9ac5c45e1f3fd071810e240e2d4b4da0f9c133 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001030784400064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 08:43:23 EDT 2025 Tue Nov 18 22:23:49 EST 2025 Sat Nov 29 06:39:35 EST 2025 Wed Aug 27 02:57:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-bd79f0931bba1d95c82566587fb9ac5c45e1f3fd071810e240e2d4b4da0f9c133 |
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
| ORCID | 0000-0002-6282-6831 0000-0003-1026-6024 |
| PQID | 2837138633 |
| PQPubID | 75733 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_2837138633 crossref_citationtrail_10_1109_JSEN_2023_3280993 crossref_primary_10_1109_JSEN_2023_3280993 ieee_primary_10144548 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-15 |
| PublicationDateYYYYMMDD | 2023-07-15 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 yuan (ref6) 2013; 5 ref30 zhang (ref1) 2021; 2021 ref11 ref32 ref17 (ref35) 2021 gao (ref33) 2007 li (ref19) 2020; 11 liang (ref16) 2020; 34 chen (ref7) 2020; 5 chai (ref31) 2020; 33 liu (ref15) 2020; 48 ref24 ref23 wang (ref14) 2018 ref26 ref25 ref22 wu (ref10) 2011 liang (ref18) 2020 li (ref21) 2020; 40 shu (ref3) 2014; 32 ref28 chen (ref34) 2015 wang (ref2) 2007; 16 ref29 chai (ref27) 2022 ref8 ref9 li (ref20) 2021 (ref36) 2009 ren (ref5) 2019 guo (ref12) 2016 chen (ref4) 2020; 20 |
| References_xml | – volume: 33 start-page: 1 year: 2020 ident: ref31 article-title: Design and implementation of deep neural network-based control for automatic parking maneuver process publication-title: IEEE Trans Neural Netw Learn Syst – year: 2018 ident: ref14 publication-title: Signal conditioning optimization and component signal recognition for redundant particles detection of sealing electronic components – ident: ref9 doi: 10.1109/IRPS.1974.362624 – volume: 2021 start-page: 7 year: 2021 ident: ref1 article-title: Research on residue control technology of PCB electrical connector for spacecraft publication-title: Aerosp Manuf Technol – start-page: 270 year: 2021 ident: ref35 publication-title: Test Methods and Procedures for Microelectronic Device – start-page: 27 year: 2020 ident: ref18 publication-title: Design and implementation of sealed relay loose particle signal detection based on random forest – volume: 40 start-page: 30 year: 2020 ident: ref21 article-title: Identification of sealed relay PIND signal based on multilayer perceptron publication-title: Journal of Astronautic Metrology and Measurement – volume: 34 start-page: 178 year: 2020 ident: ref16 article-title: Sealed relay loose particle signal recognition technology based on decision tree algorithm of parameter optimization publication-title: J Electron Meas Instrum – start-page: 75 year: 2009 ident: ref36 publication-title: Test Methods for Electronic and Electrical Component Parts – year: 2011 ident: ref10 publication-title: Research on identification method of activated remainder for electronic equipment in satellites – ident: ref28 doi: 10.1016/j.neucom.2017.02.045 – start-page: 52 year: 2021 ident: ref20 publication-title: Signal recognition technology of sealed electronic components and components based on boosting algorithm – volume: 48 start-page: 716 year: 2020 ident: ref15 article-title: Detection algorithm of remainder in high-precision spacecraft publication-title: J Tongji Univ Natural Sci – ident: ref11 doi: 10.1109/IMCCC.2015.97 – start-page: 29 year: 2015 ident: ref34 publication-title: Signal pattern recognition and confidence evaluation for loose particle detection of sealed electronic devices – year: 2022 ident: ref27 article-title: Deep learning-based trajectory planning and control for autonomous ground vehicle parking maneuver publication-title: IEEE Trans Autom Sci Eng – year: 2016 ident: ref12 publication-title: Research on loose particle recognition and location method for rocket engines – ident: ref24 doi: 10.1109/JSEN.2019.2945364 – ident: ref25 doi: 10.1109/JSEN.2021.3139135 – start-page: 168 year: 2019 ident: ref5 article-title: Analysis of the unqualified reason of PIND test failure publication-title: Proc Nat Microw Millim Wave Conf – ident: ref29 doi: 10.1016/j.ymssp.2022.109603 – ident: ref22 doi: 10.3390/s22093566 – ident: ref13 doi: 10.1177/0142331214538277 – volume: 20 start-page: 15 year: 2020 ident: ref4 article-title: Analysis and dispose of PIND typical issue in ceramic packaging publication-title: Journal of Electronic Packaging – volume: 16 start-page: 68 year: 2007 ident: ref2 article-title: Development state and thought of the satellite synthesized electronic system publication-title: Spacecraft Engineering – volume: 5 start-page: 37 year: 2013 ident: ref6 article-title: Process control of remainder publication-title: Qual Rel – start-page: 62 year: 2007 ident: ref33 publication-title: Research on remainder automatic detection and feature identification for space relay – volume: 5 start-page: 1 year: 2020 ident: ref7 article-title: Discussion on the positioning of redundant objects in zeroing of aerospace electronic equipment publication-title: Qual Rel – volume: 11 start-page: 71 year: 2020 ident: ref19 article-title: Excess signal detection technology based on parameter tuning Xgboost algorithm publication-title: Journal of Heilongjiang Hydraulic Engineering Colleg – ident: ref32 doi: 10.1109/JSEN.2022.3187109 – ident: ref23 doi: 10.1016/j.trc.2018.03.001 – ident: ref26 doi: 10.1016/j.ymssp.2019.106587 – ident: ref8 doi: 10.1109/IRPS.1972.362525 – ident: ref30 doi: 10.1109/TII.2018.2864759 – ident: ref17 doi: 10.1016/j.knosys.2020.105845 – volume: 32 start-page: 26 year: 2014 ident: ref3 article-title: Reminders extraction and control of sealed devices publication-title: Electron Product Rel Environ Test |
| SSID | ssj0019757 |
| Score | 2.4020872 |
| Snippet | In this paper, a novel algorithm combining adaptive scaling of framing windows and pulse trajectory tracking is proposed for the detection of internal loose... In this article, a novel algorithm combining adaptive scaling of framing windows and pulse trajectory tracking is proposed for the detection of internal loose... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptive algorithms adaptive scaling algorithm Aerospace electronics Algorithms Electronic components Fourier transforms instability loose particle detection Particle impact Recognition Scaling Sensors signal identification Time series analysis Tracking Trajectory tracking trajectory tracking algorithm Vibrations Visualization |
| Title | Periodic Signal Recognition Technology Based on Framing Window Adaptive Scaling Algorithm and Trajectory Tracking Algorithm: A Case Study of Aerospace Loose Particle Detection Signal |
| URI | https://ieeexplore.ieee.org/document/10144548 https://www.proquest.com/docview/2837138633 |
| Volume | 23 |
| WOSCitedRecordID | wos001030784400064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fTxQxEG6EmKgPoAjxFE0ffDLZY3fbbre8LQgxxlwunsZ72_QnnMKWHIvk_jH-Pqe9HkKMJr413bZp9pu230ynMwi9JZwyLkqVVbICBaUSMhNl6TJF8-BzmFNldEw2wUejejoV4_RYPb6FsdZG5zM7DMV4l2-8vgqmsr2QV5YCxV5Da5xXy8dat1cGgsewnrCC84wSPk1XmEUu9j5OjkbDkCd8SMoaKBG5dwjFrCp_bMXxfDne_M-ZPUUbiUjiZon8M_TAdlvoyZ3wglvoUcpwfrp4jm7GUOnNTOPJ7CR0_LzyHPId_m1fxwdwqhkMdcBoz2EU_A2Udn-NGyMvws6IJwBqqG_OTvx81p-eY9kZDEfe92j_X4Si_nGvxT5u8CGMi4PT4gJ7hxsL_wW0dYs_eQ8fxkmA8XvbR9-wLk1zG309Pvpy-CFLORsyXQraZ8pw4XJBCqVkYQTToIFWwHK4U0JqpimzhSPOALOpi9wCn7CloYoamTuhQWHeQeud7-wLhCsQFEWAATkGvJOBYsikE1RSzhWpmRygfAViq1NA85BX46yNik0u2oB7G3BvE-4D9O62y8Uymse_Gm8HoO80XGI8QLsrUWnTgr9sQxChgtQVIS__0u0VehxGD3bhgu2i9X5-ZV-jh_pnP7ucv4my_AuZa_LR |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagIJUeeJRWbCngAyekbJ3YTuLeQmlVYFmt2CL2FvnZLrRJtU1B-8f6-xh7vaUVAolb5NiOlW9sf-MZzyD0mhaMFyJTSS5zUFByIRORZS5RjHifQ8KU0SHZRDEclpOJGMXL6uEujLU2OJ_Zvn8MtnzT6kt_VLbj88oyoNh30T3OWEYW17WujQaiCIE9YQ6ThNFiEo2YKRE7H8b7w77PFN6nWQmkiN7ahkJelT8W47DDHDz6z7E9Rg8jlcTVAvsn6I5t1tHajQCD62g15jg_mT9FVyMobM1U4_H02Df8vPQdahv8-4Qdv4V9zWAoA057Br3gr6C2tz9xZeS5XxvxGGD15dXpcTubdidnWDYGw6b3LVgA5v5Rf79VYxdXeA_6xd5tcY5bhysL_wX0dYsHbQsvRlGE8TvbBe-wJg5zA3052D_aO0xi1oZEZ4J1iTKFcETQVCmZGsE16KA58JzCKSE114zb1FFngNuUKbHAKGxmmGJGEic0qMybaKVpG_sM4RxERVHgQI4D8-SgGnLpBJOsKBQtuewhsgSx1jGkuc-scVoH1YaI2uNee9zriHsPvblucr6I5_Gvyhse6BsVFxj30PZSVOo45S9qH0YopWVO6dZfmr1Cq4dHnwb14P3w43P0wH_JnxKnfButdLNL-wLd1z-66cXsZZDrX1pY9hg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Periodic+Signal+Recognition+Technology+Based+on+Framing+Window+Adaptive+Scaling+Algorithm+and+Trajectory+Tracking+Algorithm%3A+A+Case+Study+of+Aerospace+Loose+Particle+Detection+Signal&rft.jtitle=IEEE+sensors+journal&rft.au=Zhai%2C+Guofu&rft.au=Li%2C+Pengfei&rft.au=Wang%2C+Guotao&rft.au=Sun%2C+Zhigang&rft.date=2023-07-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=14&rft.spage=15878&rft.epage=15891&rft_id=info:doi/10.1109%2FJSEN.2023.3280993&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2023_3280993 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |