Periodic Signal Recognition Technology Based on Framing Window Adaptive Scaling Algorithm and Trajectory Tracking Algorithm: A Case Study of Aerospace Loose Particle Detection Signal

In this paper, a novel algorithm combining adaptive scaling of framing windows and pulse trajectory tracking is proposed for the detection of internal loose particles in aerospace sealed electronic components. The proposed algorithm can be used to identify whether the detection signal has general or...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE sensors journal Ročník 23; číslo 14; s. 1
Hlavní autoři: Zhai, Guofu, Li, Pengfei, Wang, Guotao, Sun, Zhigang, Han, Xiao, Wang, Qiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 15.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1530-437X, 1558-1748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, a novel algorithm combining adaptive scaling of framing windows and pulse trajectory tracking is proposed for the detection of internal loose particles in aerospace sealed electronic components. The proposed algorithm can be used to identify whether the detection signal has general or local periodicity, and to distinguish particle signals from component signals. The algorithm utilizes adaptive scaling of the framing windows length, which can effectively reduce the influence of the signal periodic instability caused by the change of the signal frequency. In order to evaluate the performance of the algorithm, 600 sets of data were collected on the Particle Impact Noise Detection platform. The single-component signal, loose particle signal, multi-component signal and mixed signal were verified respectively with the accurate rate close to 95%, and the recognition effect was great. In addition, compared with results using Fourier transform, the identification results of signal type using the proposed algorithm are more intuitive.
AbstractList In this article, a novel algorithm combining adaptive scaling of framing windows and pulse trajectory tracking is proposed for the detection of internal loose particles in aerospace sealed electronic components. The proposed algorithm can be used to identify whether the detection signal has general or local periodicity and to distinguish particle signals from component signals. The algorithm uses adaptive scaling of the framing windows length, which can effectively reduce the influence of the signal periodic instability caused by the change of the signal frequency. In order to evaluate the performance of the algorithm, 600 sets of data were collected on the particle impact noise detection (PIND) platform. The single-component signal, loose particle signal, multicomponent signal, and mixed signal were verified, respectively, with the accurate rate close to 95%, and the recognition effect was great. In addition, compared with results using Fourier transform, the identification results of signal type using the proposed algorithm are more intuitive.
In this paper, a novel algorithm combining adaptive scaling of framing windows and pulse trajectory tracking is proposed for the detection of internal loose particles in aerospace sealed electronic components. The proposed algorithm can be used to identify whether the detection signal has general or local periodicity, and to distinguish particle signals from component signals. The algorithm utilizes adaptive scaling of the framing windows length, which can effectively reduce the influence of the signal periodic instability caused by the change of the signal frequency. In order to evaluate the performance of the algorithm, 600 sets of data were collected on the Particle Impact Noise Detection platform. The single-component signal, loose particle signal, multi-component signal and mixed signal were verified respectively with the accurate rate close to 95%, and the recognition effect was great. In addition, compared with results using Fourier transform, the identification results of signal type using the proposed algorithm are more intuitive.
Author Sun, Zhigang
Han, Xiao
Wang, Qiang
Zhai, Guofu
Li, Pengfei
Wang, Guotao
Author_xml – sequence: 1
  givenname: Guofu
  orcidid: 0000-0003-1026-6024
  surname: Zhai
  fullname: Zhai, Guofu
– sequence: 2
  givenname: Pengfei
  orcidid: 0000-0002-6282-6831
  surname: Li
  fullname: Li, Pengfei
– sequence: 3
  givenname: Guotao
  surname: Wang
  fullname: Wang, Guotao
– sequence: 4
  givenname: Zhigang
  surname: Sun
  fullname: Sun, Zhigang
– sequence: 5
  givenname: Xiao
  surname: Han
  fullname: Han, Xiao
– sequence: 6
  givenname: Qiang
  surname: Wang
  fullname: Wang, Qiang
BookMark eNp9kc1uEzEUhS1UJNrCAyCxsMR6Untsx2N2Q2j5UdRWJAh2I499Z-owsYPHocqL9fkYK10Aiy4sX917ztEnnTN04oMHhF5TMqOUqIsvq8vrWUlKNmNlRZRiz9ApFaIqqOTVSZ4ZKTiTP16gs3HcEEKVFPIUPdxCdME6g1eu93rAX8GE3rvkgsdrMHc-DKE_4Pd6BIun3VXUW-d7_N15G-5xbfUuud-AV0YPeV8PfYgu3W2x9havo96ASSEe8mh-_qN4h2u8mHLxKu3tAYcO1xDDuNMG8DKE6XCrY3JmAPwB0hSTmY6YL9HzTg8jvHr8z9G3q8v14lOxvPn4eVEvC1MqnorWStURxWjbamqVMFUp5nNRya5V2gjDBdCOdZZIWlECJZ-e5S23mnTKUMbO0dtj7i6GX3sYU7MJ-zgBjE1ZMUlZNWdZJY8qM-GPEbrGuKQzboraDQ0lTS6pySU1uaTmsaTJSf9z7qLb6nh40vPm6HEA8Jeeci54xf4AR-KicQ
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_compag_2024_108948
crossref_primary_10_1109_TIM_2025_3547476
crossref_primary_10_1016_j_engappai_2024_109529
Cites_doi 10.1109/IRPS.1974.362624
10.1016/j.neucom.2017.02.045
10.1109/IMCCC.2015.97
10.1109/JSEN.2019.2945364
10.1109/JSEN.2021.3139135
10.1016/j.ymssp.2022.109603
10.3390/s22093566
10.1177/0142331214538277
10.1109/JSEN.2022.3187109
10.1016/j.trc.2018.03.001
10.1016/j.ymssp.2019.106587
10.1109/IRPS.1972.362525
10.1109/TII.2018.2864759
10.1016/j.knosys.2020.105845
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2023.3280993
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2023_3280993
10144548
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities of Heilongjiang Province
  grantid: No. 2020-KYYWF-1006
– fundername: Natural Science Foundation of Heilongjiang Province
  grantid: Nos. QC2017059 and JJ2020LH1310
  funderid: 10.13039/501100005046
– fundername: National Natural Science Foundation of China
  grantid: No. 51607059
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-bd79f0931bba1d95c82566587fb9ac5c45e1f3fd071810e240e2d4b4da0f9c133
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001030784400064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 08:43:23 EDT 2025
Tue Nov 18 22:23:49 EST 2025
Sat Nov 29 06:39:35 EST 2025
Wed Aug 27 02:57:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-bd79f0931bba1d95c82566587fb9ac5c45e1f3fd071810e240e2d4b4da0f9c133
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0002-6282-6831
0000-0003-1026-6024
PQID 2837138633
PQPubID 75733
PageCount 1
ParticipantIDs proquest_journals_2837138633
crossref_citationtrail_10_1109_JSEN_2023_3280993
crossref_primary_10_1109_JSEN_2023_3280993
ieee_primary_10144548
PublicationCentury 2000
PublicationDate 2023-07-15
PublicationDateYYYYMMDD 2023-07-15
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
yuan (ref6) 2013; 5
ref30
zhang (ref1) 2021; 2021
ref11
ref32
ref17
(ref35) 2021
gao (ref33) 2007
li (ref19) 2020; 11
liang (ref16) 2020; 34
chen (ref7) 2020; 5
chai (ref31) 2020; 33
liu (ref15) 2020; 48
ref24
ref23
wang (ref14) 2018
ref26
ref25
ref22
wu (ref10) 2011
liang (ref18) 2020
li (ref21) 2020; 40
shu (ref3) 2014; 32
ref28
chen (ref34) 2015
wang (ref2) 2007; 16
ref29
chai (ref27) 2022
ref8
ref9
li (ref20) 2021
(ref36) 2009
ren (ref5) 2019
guo (ref12) 2016
chen (ref4) 2020; 20
References_xml – volume: 33
  start-page: 1
  year: 2020
  ident: ref31
  article-title: Design and implementation of deep neural network-based control for automatic parking maneuver process
  publication-title: IEEE Trans Neural Netw Learn Syst
– year: 2018
  ident: ref14
  publication-title: Signal conditioning optimization and component signal recognition for redundant particles detection of sealing electronic components
– ident: ref9
  doi: 10.1109/IRPS.1974.362624
– volume: 2021
  start-page: 7
  year: 2021
  ident: ref1
  article-title: Research on residue control technology of PCB electrical connector for spacecraft
  publication-title: Aerosp Manuf Technol
– start-page: 270
  year: 2021
  ident: ref35
  publication-title: Test Methods and Procedures for Microelectronic Device
– start-page: 27
  year: 2020
  ident: ref18
  publication-title: Design and implementation of sealed relay loose particle signal detection based on random forest
– volume: 40
  start-page: 30
  year: 2020
  ident: ref21
  article-title: Identification of sealed relay PIND signal based on multilayer perceptron
  publication-title: Journal of Astronautic Metrology and Measurement
– volume: 34
  start-page: 178
  year: 2020
  ident: ref16
  article-title: Sealed relay loose particle signal recognition technology based on decision tree algorithm of parameter optimization
  publication-title: J Electron Meas Instrum
– start-page: 75
  year: 2009
  ident: ref36
  publication-title: Test Methods for Electronic and Electrical Component Parts
– year: 2011
  ident: ref10
  publication-title: Research on identification method of activated remainder for electronic equipment in satellites
– ident: ref28
  doi: 10.1016/j.neucom.2017.02.045
– start-page: 52
  year: 2021
  ident: ref20
  publication-title: Signal recognition technology of sealed electronic components and components based on boosting algorithm
– volume: 48
  start-page: 716
  year: 2020
  ident: ref15
  article-title: Detection algorithm of remainder in high-precision spacecraft
  publication-title: J Tongji Univ Natural Sci
– ident: ref11
  doi: 10.1109/IMCCC.2015.97
– start-page: 29
  year: 2015
  ident: ref34
  publication-title: Signal pattern recognition and confidence evaluation for loose particle detection of sealed electronic devices
– year: 2022
  ident: ref27
  article-title: Deep learning-based trajectory planning and control for autonomous ground vehicle parking maneuver
  publication-title: IEEE Trans Autom Sci Eng
– year: 2016
  ident: ref12
  publication-title: Research on loose particle recognition and location method for rocket engines
– ident: ref24
  doi: 10.1109/JSEN.2019.2945364
– ident: ref25
  doi: 10.1109/JSEN.2021.3139135
– start-page: 168
  year: 2019
  ident: ref5
  article-title: Analysis of the unqualified reason of PIND test failure
  publication-title: Proc Nat Microw Millim Wave Conf
– ident: ref29
  doi: 10.1016/j.ymssp.2022.109603
– ident: ref22
  doi: 10.3390/s22093566
– ident: ref13
  doi: 10.1177/0142331214538277
– volume: 20
  start-page: 15
  year: 2020
  ident: ref4
  article-title: Analysis and dispose of PIND typical issue in ceramic packaging
  publication-title: Journal of Electronic Packaging
– volume: 16
  start-page: 68
  year: 2007
  ident: ref2
  article-title: Development state and thought of the satellite synthesized electronic system
  publication-title: Spacecraft Engineering
– volume: 5
  start-page: 37
  year: 2013
  ident: ref6
  article-title: Process control of remainder
  publication-title: Qual Rel
– start-page: 62
  year: 2007
  ident: ref33
  publication-title: Research on remainder automatic detection and feature identification for space relay
– volume: 5
  start-page: 1
  year: 2020
  ident: ref7
  article-title: Discussion on the positioning of redundant objects in zeroing of aerospace electronic equipment
  publication-title: Qual Rel
– volume: 11
  start-page: 71
  year: 2020
  ident: ref19
  article-title: Excess signal detection technology based on parameter tuning Xgboost algorithm
  publication-title: Journal of Heilongjiang Hydraulic Engineering Colleg
– ident: ref32
  doi: 10.1109/JSEN.2022.3187109
– ident: ref23
  doi: 10.1016/j.trc.2018.03.001
– ident: ref26
  doi: 10.1016/j.ymssp.2019.106587
– ident: ref8
  doi: 10.1109/IRPS.1972.362525
– ident: ref30
  doi: 10.1109/TII.2018.2864759
– ident: ref17
  doi: 10.1016/j.knosys.2020.105845
– volume: 32
  start-page: 26
  year: 2014
  ident: ref3
  article-title: Reminders extraction and control of sealed devices
  publication-title: Electron Product Rel Environ Test
SSID ssj0019757
Score 2.4020872
Snippet In this paper, a novel algorithm combining adaptive scaling of framing windows and pulse trajectory tracking is proposed for the detection of internal loose...
In this article, a novel algorithm combining adaptive scaling of framing windows and pulse trajectory tracking is proposed for the detection of internal loose...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive algorithms
adaptive scaling algorithm
Aerospace electronics
Algorithms
Electronic components
Fourier transforms
instability
loose particle detection
Particle impact
Recognition
Scaling
Sensors
signal identification
Time series analysis
Tracking
Trajectory tracking
trajectory tracking algorithm
Vibrations
Visualization
Title Periodic Signal Recognition Technology Based on Framing Window Adaptive Scaling Algorithm and Trajectory Tracking Algorithm: A Case Study of Aerospace Loose Particle Detection Signal
URI https://ieeexplore.ieee.org/document/10144548
https://www.proquest.com/docview/2837138633
Volume 23
WOSCitedRecordID wos001030784400064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fTxQxEG6EmKgPoAjxFE0ffDLZY3fbbre8LQgxxlwunsZ72_QnnMKWHIvk_jH-Pqe9HkKMJr413bZp9pu230ynMwi9JZwyLkqVVbICBaUSMhNl6TJF8-BzmFNldEw2wUejejoV4_RYPb6FsdZG5zM7DMV4l2-8vgqmsr2QV5YCxV5Da5xXy8dat1cGgsewnrCC84wSPk1XmEUu9j5OjkbDkCd8SMoaKBG5dwjFrCp_bMXxfDne_M-ZPUUbiUjiZon8M_TAdlvoyZ3wglvoUcpwfrp4jm7GUOnNTOPJ7CR0_LzyHPId_m1fxwdwqhkMdcBoz2EU_A2Udn-NGyMvws6IJwBqqG_OTvx81p-eY9kZDEfe92j_X4Si_nGvxT5u8CGMi4PT4gJ7hxsL_wW0dYs_eQ8fxkmA8XvbR9-wLk1zG309Pvpy-CFLORsyXQraZ8pw4XJBCqVkYQTToIFWwHK4U0JqpimzhSPOALOpi9wCn7CloYoamTuhQWHeQeud7-wLhCsQFEWAATkGvJOBYsikE1RSzhWpmRygfAViq1NA85BX46yNik0u2oB7G3BvE-4D9O62y8Uymse_Gm8HoO80XGI8QLsrUWnTgr9sQxChgtQVIS__0u0VehxGD3bhgu2i9X5-ZV-jh_pnP7ucv4my_AuZa_LR
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagIJUeeJRWbCngAyekbJ3YTuLeQmlVYFmt2CL2FvnZLrRJtU1B-8f6-xh7vaUVAolb5NiOlW9sf-MZzyD0mhaMFyJTSS5zUFByIRORZS5RjHifQ8KU0SHZRDEclpOJGMXL6uEujLU2OJ_Zvn8MtnzT6kt_VLbj88oyoNh30T3OWEYW17WujQaiCIE9YQ6ThNFiEo2YKRE7H8b7w77PFN6nWQmkiN7ahkJelT8W47DDHDz6z7E9Rg8jlcTVAvsn6I5t1tHajQCD62g15jg_mT9FVyMobM1U4_H02Df8vPQdahv8-4Qdv4V9zWAoA057Br3gr6C2tz9xZeS5XxvxGGD15dXpcTubdidnWDYGw6b3LVgA5v5Rf79VYxdXeA_6xd5tcY5bhysL_wX0dYsHbQsvRlGE8TvbBe-wJg5zA3052D_aO0xi1oZEZ4J1iTKFcETQVCmZGsE16KA58JzCKSE114zb1FFngNuUKbHAKGxmmGJGEic0qMybaKVpG_sM4RxERVHgQI4D8-SgGnLpBJOsKBQtuewhsgSx1jGkuc-scVoH1YaI2uNee9zriHsPvblucr6I5_Gvyhse6BsVFxj30PZSVOo45S9qH0YopWVO6dZfmr1Cq4dHnwb14P3w43P0wH_JnxKnfButdLNL-wLd1z-66cXsZZDrX1pY9hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Periodic+Signal+Recognition+Technology+Based+on+Framing+Window+Adaptive+Scaling+Algorithm+and+Trajectory+Tracking+Algorithm%3A+A+Case+Study+of+Aerospace+Loose+Particle+Detection+Signal&rft.jtitle=IEEE+sensors+journal&rft.au=Zhai%2C+Guofu&rft.au=Li%2C+Pengfei&rft.au=Wang%2C+Guotao&rft.au=Sun%2C+Zhigang&rft.date=2023-07-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=14&rft.spage=15878&rft.epage=15891&rft_id=info:doi/10.1109%2FJSEN.2023.3280993&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2023_3280993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon