Joint Source-Channel Coding for a Multivariate Gaussian over a Gaussian MAC using Variational Domain Adaptation

With the development of the distributed learning and edge computing, servers must often receive information from multiple terminal devices; thus, the importance of source-channel coding for distributed sources over multiple access channels (MACs) becomes more and more significant. This study present...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cognitive communications and networking Ročník 9; číslo 6; s. 1
Hlavní autoři: Li, Yishen, Chen, Xuechen, Deng, Xiaoheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2332-7731, 2332-7731
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the development of the distributed learning and edge computing, servers must often receive information from multiple terminal devices; thus, the importance of source-channel coding for distributed sources over multiple access channels (MACs) becomes more and more significant. This study presents a deep joint source-channel coding (JSCC) design for a multivariate Gaussian source over a Gaussian MAC. The widely used autoencoder based deep-JSCC cannot perform stably under such conditions due to their easiness to fall into local optimum. Therefore we propose the variational domain adaptation (VDA)-JSCC scheme. Firstly, the loss function with an additional regularization term is introduced through variational analysis. The crucial prior distribution related to this item is obtained by domain adaptation, which is a transfer learning method. The proposed fine-tuning technique during the training process yields further performance improvement. Experiment results show that VDA-JSCC can always learn reasonable coding structures without artificial design and outperforms other state-of-the-art methods under different channel signal-to-noise ratios (CSNRs). We have also analyzed the reason why the performance of VDA-JSCC deteriorates in high CSNR range and then replace the encoder of VDA-JSCC with Mixture-of-Experts to improve its performance in high CSNR range. Finally, VDA-JSCC exhibits considerable robustness when the channel quality or correlation coefficient varies.
AbstractList With the development of the distributed learning and edge computing, servers must often receive information from multiple terminal devices; thus, the importance of source-channel coding for distributed sources over multiple access channels (MACs) becomes more and more significant. This letter presents a deep joint source-channel coding (JSCC) design for a multivariate Gaussian source over a Gaussian MAC. The widely used autoencoder based deep-JSCC cannot perform stably under such conditions due to their easiness to fall into local optimum. Therefore we propose the variational domain adaptation (VDA)-JSCC scheme. Firstly, the loss function with an additional regularization term is introduced through variational analysis. The crucial prior distribution related to this item is obtained by domain adaptation, which is a transfer learning method. The proposed fine-tuning technique during the training process yields further performance improvement. Experiment results show that VDA-JSCC can always learn reasonable coding structures without artificial design and outperforms other state-of-the-art methods under different channel signal-to-noise ratios (CSNRs). We have also analyzed the reason why the performance of VDA-JSCC deteriorates in high CSNR range and then replace the encoder of VDA-JSCC with Mixture-of-Experts to improve its performance in high CSNR range. Finally, VDA-JSCC exhibits considerable robustness when the channel quality or correlation coefficient varies.
With the development of the distributed learning and edge computing, servers must often receive information from multiple terminal devices; thus, the importance of source-channel coding for distributed sources over multiple access channels (MACs) becomes more and more significant. This study presents a deep joint source-channel coding (JSCC) design for a multivariate Gaussian source over a Gaussian MAC. The widely used autoencoder based deep-JSCC cannot perform stably under such conditions due to their easiness to fall into local optimum. Therefore we propose the variational domain adaptation (VDA)-JSCC scheme. Firstly, the loss function with an additional regularization term is introduced through variational analysis. The crucial prior distribution related to this item is obtained by domain adaptation, which is a transfer learning method. The proposed fine-tuning technique during the training process yields further performance improvement. Experiment results show that VDA-JSCC can always learn reasonable coding structures without artificial design and outperforms other state-of-the-art methods under different channel signal-to-noise ratios (CSNRs). We have also analyzed the reason why the performance of VDA-JSCC deteriorates in high CSNR range and then replace the encoder of VDA-JSCC with Mixture-of-Experts to improve its performance in high CSNR range. Finally, VDA-JSCC exhibits considerable robustness when the channel quality or correlation coefficient varies.
Author Chen, Xuechen
Li, Yishen
Deng, Xiaoheng
Author_xml – sequence: 1
  givenname: Yishen
  surname: Li
  fullname: Li, Yishen
  organization: School of Computer Science and Engineering, Central South University, Changsha, China
– sequence: 2
  givenname: Xuechen
  orcidid: 0000-0002-7683-2933
  surname: Chen
  fullname: Chen, Xuechen
  organization: School of Computer Science and Engineering, Central South University, Changsha, China
– sequence: 3
  givenname: Xiaoheng
  orcidid: 0000-0003-2740-8025
  surname: Deng
  fullname: Deng, Xiaoheng
  organization: School of Computer Science and Engineering, Central South University, Changsha, China
BookMark eNp9kM1OwzAQhC1UJErpAyBxsMQ5xX-J7WMVoIBaOFC4Rm7igKvULnZSibcnaSpUceDktXe-Xc-cg4F1VgNwidEEYyRvlmn6PCGI0AklkvGYnYAhoZREnFM8OKrPwDiENUIIJyRJBBsC9-SMreGra3yuo_RTWasrmLrC2A9YOg8VXDRVbXbKG1VrOFNNCEZZ6Ha6a_7eF9MUNqGj3vdS46yq4K3bKGPhtFDbev92AU5LVQU9Ppwj8HZ_t0wfovnL7DGdzqO8dVBHK1HwokAcCRFzjVmxwnkiNMWSE0mLPC-l1EwQqqlKNCMYr5BICoGULFuopCNw3c_devfV6FBn69Zi-6WQESElS7hgcavCvSr3LgSvy2zrzUb57wyjrIs266LNumizQ7Qtw_8wuem91V6Z6l_yqieN1vpoExYIxZL-ADoXiBI
CODEN ITCCG7
CitedBy_id crossref_primary_10_1109_TCCN_2024_3384500
Cites_doi 10.1109/IGARSS.2018.8518078
10.1109/CISS.2015.7086847
10.1109/DCC.2019.00057
10.1109/TCCN.2019.2919300
10.1109/ICNNSP.2003.1279235
10.1109/LCOMM.2013.120413.132088
10.1109/SPAWC48557.2020.9154331
10.1007/s10462-021-10067-3
10.1109/ICC42927.2021.9500692
10.1109/TCOMM.2011.081711.090298
10.1109/TKDE.2009.191
10.1162/neco.1991.3.1.79
10.1609/aaai.v31i1.10983
10.1109/HPCC-SmartCity-DSS50907.2020.00162
10.1109/TPAMI.2021.3062644
10.1109/TIT.1965.1053821
10.1109/JSAIT.2020.2987203
10.1109/JSAC.2021.3078489
10.1109/TCOMM.2012.071912.110456
10.1109/TCSVT.2021.3082521
10.1109/SPCOM50965.2020.9179539
10.1109/TNNLS.2019.2900734
10.1109/TCOMM.2017.2726065
10.1109/TIT.2010.2044058
10.1007/s10994-009-5152-4
10.1109/SPAWC.2019.8815402
10.5555/2946645.2946704
10.1109/TIT.1980.1056273
10.1109/TCOMM.2015.2410774
10.1109/JSAC.2022.3180802
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCCN.2023.3294754
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2332-7731
EndPage 1
ExternalDocumentID 10_1109_TCCN_2023_3294754
10180059
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: Nos. 62172441, 61772553 and 61301181.
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IES
IFIPE
IPLJI
JAVBF
M43
OCL
RIA
RIE
AAYXX
AGSQL
CITATION
EJD
O9-
7SP
8FD
L7M
ID FETCH-LOGICAL-c294t-b8d7dd0708857e14db1c68e3197293dccf99e4823e3a6e4211b086d80a9f708f3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001122336700016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2332-7731
IngestDate Mon Jun 30 04:44:32 EDT 2025
Tue Nov 18 22:18:31 EST 2025
Sat Nov 29 03:02:26 EST 2025
Wed Aug 27 02:21:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-b8d7dd0708857e14db1c68e3197293dccf99e4823e3a6e4211b086d80a9f708f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7683-2933
0000-0003-2740-8025
0009-0009-5128-1221
PQID 2899467845
PQPubID 4437218
PageCount 1
ParticipantIDs ieee_primary_10180059
proquest_journals_2899467845
crossref_primary_10_1109_TCCN_2023_3294754
crossref_citationtrail_10_1109_TCCN_2023_3294754
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive communications and networking
PublicationTitleAbbrev TCCN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
Song (ref20) 2020
ref14
Choi (ref19)
ref31
ref30
ref11
ref33
Sønderby (ref29)
ref2
ref1
ref17
Kingma (ref37)
ref39
Floor (ref10)
ref16
ref38
ref18
Kingma (ref28) 2014
ref24
ref23
ref26
Glorot (ref34)
ref25
Loshchilov (ref36)
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Ghosh (ref32)
References_xml – ident: ref39
  doi: 10.1109/IGARSS.2018.8518078
– ident: ref5
  doi: 10.1109/CISS.2015.7086847
– start-page: 2084
  volume-title: Proc. 19th Eur. Signal Process. Conf. (EUSIPCO)
  ident: ref10
  article-title: Distributed zero-delay joint source-channel coding for a bi-variate Gaussian on a Gaussian MAC
– ident: ref35
  doi: 10.1109/DCC.2019.00057
– ident: ref2
  doi: 10.1109/TCCN.2019.2919300
– ident: ref16
  doi: 10.1109/ICNNSP.2003.1279235
– start-page: 249
  volume-title: Proc. 13th Int. Conf. Artif. Intell. Statist.
  ident: ref34
  article-title: Understanding the difficulty of training deep feedforward neural networks
– start-page: 3745
  volume-title: Proc. 30th Int. Conf. Neural Inf. Process. Syst.
  ident: ref29
  article-title: Ladder variational autoencoders
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref36
  article-title: SGDR: Stochastic gradient descent with warm restarts
– ident: ref12
  doi: 10.1109/LCOMM.2013.120413.132088
– ident: ref23
  doi: 10.1109/SPAWC48557.2020.9154331
– ident: ref14
  doi: 10.1007/s10462-021-10067-3
– ident: ref18
  doi: 10.1109/ICC42927.2021.9500692
– ident: ref4
  doi: 10.1109/TCOMM.2011.081711.090298
– ident: ref24
  doi: 10.1109/TKDE.2009.191
– ident: ref33
  doi: 10.1162/neco.1991.3.1.79
– start-page: 1182
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref19
  article-title: NECST: Neural joint source-channel coding
– ident: ref30
  doi: 10.1609/aaai.v31i1.10983
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref37
  article-title: Adam: A method for stochastic optimization
– ident: ref38
  doi: 10.1109/HPCC-SmartCity-DSS50907.2020.00162
– ident: ref26
  doi: 10.1109/TPAMI.2021.3062644
– ident: ref6
  doi: 10.1109/TIT.1965.1053821
– ident: ref13
  doi: 10.1109/JSAIT.2020.2987203
– ident: ref22
  doi: 10.1109/JSAC.2021.3078489
– year: 2014
  ident: ref28
  article-title: Auto-encoding variational bayes
  publication-title: arXiv:1312.6114
– ident: ref3
  doi: 10.1109/TCOMM.2012.071912.110456
– ident: ref15
  doi: 10.1109/TCSVT.2021.3082521
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref32
  article-title: From variational to deterministic autoencoders
– ident: ref17
  doi: 10.1109/SPCOM50965.2020.9179539
– ident: ref31
  doi: 10.1109/TNNLS.2019.2900734
– year: 2020
  ident: ref20
  article-title: Improving unsupervised domain adaptation with variational information bottleneck
  publication-title: arXiv:1911.09310
– ident: ref1
  doi: 10.1109/TCOMM.2017.2726065
– ident: ref9
  doi: 10.1109/TIT.2010.2044058
– ident: ref27
  doi: 10.1007/s10994-009-5152-4
– ident: ref7
  doi: 10.1109/SPAWC.2019.8815402
– ident: ref25
  doi: 10.5555/2946645.2946704
– ident: ref8
  doi: 10.1109/TIT.1980.1056273
– ident: ref11
  doi: 10.1109/TCOMM.2015.2410774
– ident: ref21
  doi: 10.1109/JSAC.2022.3180802
SSID ssj0001626684
Score 2.2696831
Snippet With the development of the distributed learning and edge computing, servers must often receive information from multiple terminal devices; thus, the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation
Adaptation models
Coding
Correlation coefficients
Decoding
Deep joint source-channel coding
Delays
domain adaptation
Domains
Edge computing
Encoding
Feature extraction
Learning
multiple-access channel
Multivariate analysis
multivariate Gaussian
Regularization
Symbols
variational autoencoder
Title Joint Source-Channel Coding for a Multivariate Gaussian over a Gaussian MAC using Variational Domain Adaptation
URI https://ieeexplore.ieee.org/document/10180059
https://www.proquest.com/docview/2899467845
Volume 9
WOSCitedRecordID wos001122336700016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 2332-7731
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626684
  issn: 2332-7731
  databaseCode: RIE
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60eNCDb7FaZQ-ehNQ8Nvs4lmgV0SJYpbew3d1IoSalTfv73dmkWhEFbwnZDSFfNjPf7Mx8CF0QZSmOCqnHJEiYDbPALilBPS6ctLUMY-n6zD6wXo8PBuKpLlZ3tTDGGJd8Ztpw6PbydaHmECq7ct2mrD-wjtYZo1Wx1ldAxbrmlJN65zLwxVU_SXptkAdvR6EgLCbfbI8TU_nxB3ZmpbvzzwfaRdu1_4g7FeB7aM3k-2hrpavgASrui1Fe4mcXlvegfCA3Y5wUYKWw9VGxxK7sdmFpsvU08a2cz6CUEkM2p734ef7YSTDkxb_hVzfURQ3xdfEuRznuaDmptvEP0Uv3pp_cebWugqfseyi9IddMa7vWOY-ZCYgeBopyE4ECmYi0UpkQhvAwMpGkhliKOLTER3NfisxOyqIj1MiL3BwjLJSImWVUAaOCRFpCax1qQkNN7CvNsybyl288VXXTcdC-GKeOfPgiBZBSACmtQWqiy88pk6rjxl-DDwGVlYEVIE3UWuKa1otylgK3tHaBk_jkl2mnaBPuXqWrtFCjnM7NGdpQi3I0m5677-0DQ67SLw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50FdSDb3F11Rw8CV37SNvkuFTX17oIrrK3kk1SWdBW3MfvN5NWXREFby1NaOnXdOabzMwHcEyloTjSj5xYoITZIPPMkuKRw7iVthZ-KGyf2U7c7bJ-n99Vxeq2FkZrbZPPdBMP7V6-KuQEQ2WnttuU8QfmYQGls6pyra-QinHOI0arvUvP5ae9JOk2USC8GficxiH9Zn2snMqPf7A1LO21fz7SOqxWHiRplZBvwJzON2Flpq_gFhTXxTAfk3sbmHewgCDXzyQp0E4R46USQWzh7dQQZeNrkgsxGWExJcF8TnPx8_y2lRDMjH8ij3aojRuSs-JFDHPSUuK13Mjfhof2eS-5dCplBUea9zB2BkzFSpnVzlgYa4-qgScjpgPUIOOBkjLjXFPmBzoQkaaGJA4M9VHMFTwzk7JgB2p5ketdIFzyMDacyosjTgMlsLlOpH0d6dCVimV1cD_eeCqrtuOofvGcWvrh8hRBShGktAKpDiefU17Lnht_Dd5GVGYGloDUofGBa1oty1GK7NJYBkbDvV-mHcHSZe-2k3auujf7sIx3KpNXGlAbv030ASzK6Xg4eju03947XyDVeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Source-Channel+Coding+for+a+Multivariate+Gaussian+Over+a+Gaussian+MAC+Using+Variational+Domain+Adaptation&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Li%2C+Yishen&rft.au=Chen%2C+Xuechen&rft.au=Deng%2C+Xiaoheng&rft.date=2023-12-01&rft.issn=2332-7731&rft.eissn=2332-7731&rft.volume=9&rft.issue=6&rft.spage=1424&rft.epage=1437&rft_id=info:doi/10.1109%2FTCCN.2023.3294754&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCCN_2023_3294754
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon