An Interpretable Fault Detection Approach for Industrial Processes Based on Improved Autoencoder
Deep learning has recently emerged as a promising method for data-driven fault detection in industrial processes, especially autoencoders (AEs), which have achieved great detection performance. However, the AE models are essentially black boxes, which makes it difficult to interpret and trust the de...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on instrumentation and measurement Jg. 74; S. 1 - 13 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!