Multifault Feature Wasserstein Generative Adversarial Networks for Fault Diagnosis in Unbalanced Data

Due to the limitation of industrial conditions in production, raw sensor data are always shown as an unbalanced dataset, characterized by abundant normal operational data and scarce fault instances. This unbalance can degrade the performance of conventional fault diagnosis methods, leading to reduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement Jg. 74; S. 1 - 9
Hauptverfasser: Ren, Weibo, Wang, Zhijian, Chen, Zhongxin, Zhao, Shun, Dong, Lei, Li, Yanfeng, Fan, Xin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9456, 1557-9662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Due to the limitation of industrial conditions in production, raw sensor data are always shown as an unbalanced dataset, characterized by abundant normal operational data and scarce fault instances. This unbalance can degrade the performance of conventional fault diagnosis methods, leading to reduced accuracy and unstable model training. To address this challenge in bearing fault diagnosis, this article proposes a multifault feature Wasserstein generative adversarial network (MFF-WGAN) to enhance diagnostic precision. First, the framework employs a multiencoder denoising autoencoder (DAE) architecture to mitigate noise interference in raw sensor data. Subsequently, the proposed MFF-WGAN integrates label information into its adversarial loss function to enable simultaneous generation of diverse fault categories, while incorporating interclass feature discrepancies to refine sample quality. Finally, the developed multifault feature Wasserstein generation adversarial network is tested on the Case Western Reserve University bearing dataset and the laboratory bearing dataset. Computational results show that the proposed method can generate high-quality bearing samples with multiple faults effectively, which can obtain a higher diagnosis accuracy of 99.01% and 97.71% compared with the existing methods.
AbstractList Due to the limitation of industrial conditions in production, raw sensor data are always shown as an unbalanced dataset, characterized by abundant normal operational data and scarce fault instances. This unbalance can degrade the performance of conventional fault diagnosis methods, leading to reduced accuracy and unstable model training. To address this challenge in bearing fault diagnosis, this article proposes a multifault feature Wasserstein generative adversarial network (MFF-WGAN) to enhance diagnostic precision. First, the framework employs a multiencoder denoising autoencoder (DAE) architecture to mitigate noise interference in raw sensor data. Subsequently, the proposed MFF-WGAN integrates label information into its adversarial loss function to enable simultaneous generation of diverse fault categories, while incorporating interclass feature discrepancies to refine sample quality. Finally, the developed multifault feature Wasserstein generation adversarial network is tested on the Case Western Reserve University bearing dataset and the laboratory bearing dataset. Computational results show that the proposed method can generate high-quality bearing samples with multiple faults effectively, which can obtain a higher diagnosis accuracy of 99.01% and 97.71% compared with the existing methods.
Author Wang, Zhijian
Dong, Lei
Li, Yanfeng
Ren, Weibo
Fan, Xin
Zhao, Shun
Chen, Zhongxin
Author_xml – sequence: 1
  givenname: Weibo
  orcidid: 0000-0001-8666-4585
  surname: Ren
  fullname: Ren, Weibo
  email: rwb012@126.com
  organization: School of Mechanical Engineering, North University of China, Taiyuan, China
– sequence: 2
  givenname: Zhijian
  orcidid: 0000-0002-6794-2065
  surname: Wang
  fullname: Wang, Zhijian
  email: wangzhijian1013@163.com
  organization: School of Mechanical Engineering, North University of China, Taiyuan, China
– sequence: 3
  givenname: Zhongxin
  orcidid: 0000-0001-5757-2972
  surname: Chen
  fullname: Chen, Zhongxin
  email: czx19910305@163.com
  organization: School of Mechanical Engineering, North University of China, Taiyuan, China
– sequence: 4
  givenname: Shun
  orcidid: 0009-0007-9526-2458
  surname: Zhao
  fullname: Zhao, Shun
  email: 2271763827@qq.com
  organization: School of Mechanical Engineering, North University of China, Taiyuan, China
– sequence: 5
  givenname: Lei
  orcidid: 0000-0001-6151-8848
  surname: Dong
  fullname: Dong, Lei
  email: 13754892010@163.com
  organization: School of Mechanical Engineering, North University of China, Taiyuan, China
– sequence: 6
  givenname: Yanfeng
  orcidid: 0000-0002-5884-5060
  surname: Li
  fullname: Li, Yanfeng
  email: yanfengli0002@163.com
  organization: School of Mechanical Engineering, North University of China, Taiyuan, China
– sequence: 7
  givenname: Xin
  orcidid: 0000-0001-6450-234X
  surname: Fan
  fullname: Fan, Xin
  email: xfan2021@nuc.edu.cn
  organization: School of Material Science and Engineering, North University of China, Taiyuan, China
BookMark eNp9kDtLBTEQRoMoeH30FhYB673msckmpahXBR-NYrnMZicSXbOa5Cr-e1evIFjYzMDwnfngbJH1OEYkZI-zOefMHt5eXM0FE2oulWHGsDUy40o1ldVarJMZY9xUtlZ6k2zl_MgYa3TdzAheLYcSPEyTLhDKMiG9h5wx5YIh0jOMmKCEN6RH_dt0hRRgoNdY3sf0lKkfE1180ycBHuKYQ6YTdhc7GCA67OkJFNghGx6GjLs_e5vcLU5vj8-ry5uzi-Ojy8oJW5eqk15ozTjUWqLRhoNUvWg6KaxyzlpnhXRdp6xRErlvetN7QKmFt05pD3KbHKz-vqTxdYm5tI_jMsWpspVC1LqxWqkpxVYpl8acE_r2JYVnSB8tZ-2XzHaS2X7JbH9kToj-g7hQJi1jLAnC8B-4vwIDIv72cFYzZoT8BGK0hHw
CODEN IEIMAO
CitedBy_id crossref_primary_10_3390_machines13080633
Cites_doi 10.1109/access.2019.2924003
10.1016/j.inffus.2023.102005
10.1109/tim.2023.3345910
10.1016/j.measurement.2022.110826
10.1016/j.asoc.2023.110176
10.1109/tim.2025.3544700
10.1109/tim.2024.3413128
10.1016/j.measurement.2021.110460
10.1016/j.knosys.2020.105764
10.1016/j.aei.2024.102514
10.1109/mis.2022.3168356
10.3390/lubricants11020074
10.1109/tnnls.2024.3383467
10.1007/s10489-019-01624-z
10.1016/j.isatra.2021.11.040
10.1016/j.ymssp.2021.108018
10.1007/s10845-019-01522-8
10.1177/1475921719893594
10.1109/tnnls.2024.3483954
10.1109/icccnt56998.2023.10306417
10.1016/j.ymssp.2015.04.021
10.1109/tie.2021.3108726
10.1007/s40430-023-04142-9
10.1016/j.engappai.2021.104279
10.1016/j.chemolab.2022.104711
10.1016/j.ress.2024.110001
10.1109/tie.2017.2774777
10.1016/j.knosys.2020.105845
10.1145/1143844.1143945
10.1016/j.ymssp.2019.106587
10.1016/j.ins.2017.09.013
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2025.3580880
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 9
ExternalDocumentID 10_1109_TIM_2025_3580880
11040082
Genre orig-research
GrantInformation_xml – fundername: Special Guiding Project for the Transformation of Scientific and Technological Achievements
  grantid: 202304021301012
– fundername: Shanxi Scholarship Council of China
  grantid: 2021-128
  funderid: 10.13039/501100003398
– fundername: Special Fund for Science and Technology Innovation Teams of Shanxi Province
  grantid: 202304051001013
– fundername: Science and Technology Major Special Program of Shanxi
  grantid: 202301150401011
– fundername: Shanxi Basic Research Program
  grantid: 20210302124356
– fundername: Opening Project of Shanxi Key Laboratory of Advanced Manufacturing Technology
  grantid: XJZZ202102
– fundername: National Natural Science Foundation of China
  grantid: 52405566; 52275139; 52305140
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Program of Shanxi Province
  grantid: 202403021222145; 202403021222177
  funderid: 10.13039/501100004480
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-b3f26601a463e8681a35d27b3295cc99c923cbb59853e1f7d8dfae362f9c56fa3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001518786900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Thu Aug 14 02:12:13 EDT 2025
Sat Nov 29 07:42:48 EST 2025
Tue Nov 18 22:21:56 EST 2025
Wed Aug 27 02:13:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-b3f26601a463e8681a35d27b3295cc99c923cbb59853e1f7d8dfae362f9c56fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6794-2065
0000-0002-5884-5060
0000-0001-8666-4585
0000-0001-5757-2972
0000-0001-6450-234X
0000-0001-6151-8848
0009-0007-9526-2458
PQID 3224679655
PQPubID 85462
PageCount 9
ParticipantIDs ieee_primary_11040082
proquest_journals_3224679655
crossref_primary_10_1109_TIM_2025_3580880
crossref_citationtrail_10_1109_TIM_2025_3580880
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref18
  doi: 10.1109/access.2019.2924003
– ident: ref1
  doi: 10.1016/j.inffus.2023.102005
– ident: ref4
  doi: 10.1109/tim.2023.3345910
– ident: ref19
  doi: 10.1016/j.measurement.2022.110826
– ident: ref27
  doi: 10.1016/j.asoc.2023.110176
– ident: ref21
  doi: 10.1109/tim.2025.3544700
– ident: ref22
  doi: 10.1109/tim.2024.3413128
– ident: ref23
  doi: 10.1016/j.measurement.2021.110460
– ident: ref24
  doi: 10.1016/j.knosys.2020.105764
– ident: ref5
  doi: 10.1016/j.aei.2024.102514
– ident: ref17
  doi: 10.1109/mis.2022.3168356
– ident: ref20
  doi: 10.3390/lubricants11020074
– ident: ref3
  doi: 10.1109/tnnls.2024.3383467
– ident: ref10
  doi: 10.1007/s10489-019-01624-z
– ident: ref15
  doi: 10.1016/j.isatra.2021.11.040
– ident: ref14
  doi: 10.1016/j.ymssp.2021.108018
– ident: ref11
  doi: 10.1007/s10845-019-01522-8
– ident: ref25
  doi: 10.1177/1475921719893594
– ident: ref6
  doi: 10.1109/tnnls.2024.3483954
– ident: ref16
  doi: 10.1109/icccnt56998.2023.10306417
– ident: ref31
  doi: 10.1016/j.ymssp.2015.04.021
– ident: ref7
  doi: 10.1109/tie.2021.3108726
– ident: ref12
  doi: 10.1007/s40430-023-04142-9
– ident: ref29
  doi: 10.1016/j.engappai.2021.104279
– ident: ref26
  doi: 10.1016/j.chemolab.2022.104711
– ident: ref28
  doi: 10.1016/j.ress.2024.110001
– ident: ref30
  doi: 10.1109/tie.2017.2774777
– ident: ref13
  doi: 10.1016/j.knosys.2020.105845
– ident: ref8
  doi: 10.1145/1143844.1143945
– ident: ref2
  doi: 10.1016/j.ymssp.2019.106587
– ident: ref9
  doi: 10.1016/j.ins.2017.09.013
SSID ssj0007647
Score 2.4429657
Snippet Due to the limitation of industrial conditions in production, raw sensor data are always shown as an unbalanced dataset, characterized by abundant normal...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Artificial intelligence
Bearing-unbalanced data
Data mining
Datasets
Fault diagnosis
Generative adversarial networks
multiencoder denoising autoencoder (DAE)
Training
Wasserstein generative adversarial networks (WGANs)
Title Multifault Feature Wasserstein Generative Adversarial Networks for Fault Diagnosis in Unbalanced Data
URI https://ieeexplore.ieee.org/document/11040082
https://www.proquest.com/docview/3224679655
Volume 74
WOSCitedRecordID wos001518786900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20KOjBb7FaJQcvHrbtfmSzOYpa9GDxUNHbkmRnoSCtdFt_vzPZbRVEwcuyh0xY9iWZl2TmDcBlEcvQuoSFbo0KiN-GgUYVBgWmLlLEb11pfbEJNRxmr6_6qUlW97kwiOiDz7DLr_4uv5i6BR-V9chVJeyz1mGduqmTtVbLrkqTWiAzpBlMtGB5J9nXvdHDI-0EI9nlO7-MFSC_-SBfVOXHSuzdy2D3nx-2BzsNjxTXNfD7sIaTA9j-pi54AJs-utNVh4A-zbY09BTM-RYzFC_GJ1pysUtRa0_zwid8gebK8LAUwzpEvBJEbMXAW9_WkXnjSpDZ88RyYKTDQtyauTmC58Hd6OY-aOorBC7SyTywcUnuuR-aJI0xS7PQxLKIlI0jLZ3T2hH5c9ZKTS4dw1IVWVEaJI9XaifT0sTH0JpMJ3gCAo1yyiokizgpmIZaokoay0RSN2nSht7yj-euER_nGhhvud-E9HVOGOWMUd5g1IarlcV7LbzxR9sjxuSrXQNHGzpLVPNmalZ5zBJ6SqdSnv5idgZb3Ht90NKB1ny2wHPYcB_zcTW78KPuExHL1Cw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH4abBPswAYU0Y0NH3bhENokdhwf0aBqNag4FI1bZDsvUiXUoqbl9_OekwISYhKXKAe_JMqz_X223_sewO8yVbHzkoVurY6I38aRQR1HJWY-0cRvfeVCsQk9Hue3t-a6TVYPuTCIGILP8JRvw1l-Ofcr3irrEVRJxqwN-KikTPpNutbTxKsz2UhkxjSGiRisTyX7pjcZXdFaMFGnfOqXswbkCxQKZVVezcUBYAZf3_lp32CnZZLirHH9LnzA2R58eaEvuAefQ3ynr_cBQ6JtZekqmPWtFij-2ZBqyeUuRaM-zVOfCCWaa8sdU4ybIPFaELUVg2B93sTmTWtBZjczx6GRHktxbpe2AzeDi8mfYdRWWIh8YuQycmlFAN2PrcxSzLM8tqkqE-3SxCjvjfFE_7xzyhCoY1zpMi8ri4R5lfEqq2x6AJuz-QwPQaDVXjuNZJHKkomoI7JksJKKHpPJLvTWf7zwrfw4V8G4K8IypG8K8lHBPipaH3Xh5MnivpHe-E_bDvvkuV3rji4crb1atIOzLlIW0dMmU-r7G2bHsDWcXF0Wl6Px3x-wzW9qtl2OYHO5WOFP-OQfltN68Sv0wEdDrtdz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifault+Feature+Wasserstein+Generative+Adversarial+Networks+for+Fault+Diagnosis+in+Unbalanced+Data&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Ren%2C+Weibo&rft.au=Wang%2C+Zhijian&rft.au=Chen%2C+Zhongxin&rft.au=Zhao%2C+Shun&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FTIM.2025.3580880&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2025_3580880
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon