Multifault Feature Wasserstein Generative Adversarial Networks for Fault Diagnosis in Unbalanced Data
Due to the limitation of industrial conditions in production, raw sensor data are always shown as an unbalanced dataset, characterized by abundant normal operational data and scarce fault instances. This unbalance can degrade the performance of conventional fault diagnosis methods, leading to reduce...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on instrumentation and measurement Jg. 74; S. 1 - 9 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Due to the limitation of industrial conditions in production, raw sensor data are always shown as an unbalanced dataset, characterized by abundant normal operational data and scarce fault instances. This unbalance can degrade the performance of conventional fault diagnosis methods, leading to reduced accuracy and unstable model training. To address this challenge in bearing fault diagnosis, this article proposes a multifault feature Wasserstein generative adversarial network (MFF-WGAN) to enhance diagnostic precision. First, the framework employs a multiencoder denoising autoencoder (DAE) architecture to mitigate noise interference in raw sensor data. Subsequently, the proposed MFF-WGAN integrates label information into its adversarial loss function to enable simultaneous generation of diverse fault categories, while incorporating interclass feature discrepancies to refine sample quality. Finally, the developed multifault feature Wasserstein generation adversarial network is tested on the Case Western Reserve University bearing dataset and the laboratory bearing dataset. Computational results show that the proposed method can generate high-quality bearing samples with multiple faults effectively, which can obtain a higher diagnosis accuracy of 99.01% and 97.71% compared with the existing methods. |
|---|---|
| AbstractList | Due to the limitation of industrial conditions in production, raw sensor data are always shown as an unbalanced dataset, characterized by abundant normal operational data and scarce fault instances. This unbalance can degrade the performance of conventional fault diagnosis methods, leading to reduced accuracy and unstable model training. To address this challenge in bearing fault diagnosis, this article proposes a multifault feature Wasserstein generative adversarial network (MFF-WGAN) to enhance diagnostic precision. First, the framework employs a multiencoder denoising autoencoder (DAE) architecture to mitigate noise interference in raw sensor data. Subsequently, the proposed MFF-WGAN integrates label information into its adversarial loss function to enable simultaneous generation of diverse fault categories, while incorporating interclass feature discrepancies to refine sample quality. Finally, the developed multifault feature Wasserstein generation adversarial network is tested on the Case Western Reserve University bearing dataset and the laboratory bearing dataset. Computational results show that the proposed method can generate high-quality bearing samples with multiple faults effectively, which can obtain a higher diagnosis accuracy of 99.01% and 97.71% compared with the existing methods. |
| Author | Wang, Zhijian Dong, Lei Li, Yanfeng Ren, Weibo Fan, Xin Zhao, Shun Chen, Zhongxin |
| Author_xml | – sequence: 1 givenname: Weibo orcidid: 0000-0001-8666-4585 surname: Ren fullname: Ren, Weibo email: rwb012@126.com organization: School of Mechanical Engineering, North University of China, Taiyuan, China – sequence: 2 givenname: Zhijian orcidid: 0000-0002-6794-2065 surname: Wang fullname: Wang, Zhijian email: wangzhijian1013@163.com organization: School of Mechanical Engineering, North University of China, Taiyuan, China – sequence: 3 givenname: Zhongxin orcidid: 0000-0001-5757-2972 surname: Chen fullname: Chen, Zhongxin email: czx19910305@163.com organization: School of Mechanical Engineering, North University of China, Taiyuan, China – sequence: 4 givenname: Shun orcidid: 0009-0007-9526-2458 surname: Zhao fullname: Zhao, Shun email: 2271763827@qq.com organization: School of Mechanical Engineering, North University of China, Taiyuan, China – sequence: 5 givenname: Lei orcidid: 0000-0001-6151-8848 surname: Dong fullname: Dong, Lei email: 13754892010@163.com organization: School of Mechanical Engineering, North University of China, Taiyuan, China – sequence: 6 givenname: Yanfeng orcidid: 0000-0002-5884-5060 surname: Li fullname: Li, Yanfeng email: yanfengli0002@163.com organization: School of Mechanical Engineering, North University of China, Taiyuan, China – sequence: 7 givenname: Xin orcidid: 0000-0001-6450-234X surname: Fan fullname: Fan, Xin email: xfan2021@nuc.edu.cn organization: School of Material Science and Engineering, North University of China, Taiyuan, China |
| BookMark | eNp9kDtLBTEQRoMoeH30FhYB673msckmpahXBR-NYrnMZicSXbOa5Cr-e1evIFjYzMDwnfngbJH1OEYkZI-zOefMHt5eXM0FE2oulWHGsDUy40o1ldVarJMZY9xUtlZ6k2zl_MgYa3TdzAheLYcSPEyTLhDKMiG9h5wx5YIh0jOMmKCEN6RH_dt0hRRgoNdY3sf0lKkfE1180ycBHuKYQ6YTdhc7GCA67OkJFNghGx6GjLs_e5vcLU5vj8-ry5uzi-Ojy8oJW5eqk15ozTjUWqLRhoNUvWg6KaxyzlpnhXRdp6xRErlvetN7QKmFt05pD3KbHKz-vqTxdYm5tI_jMsWpspVC1LqxWqkpxVYpl8acE_r2JYVnSB8tZ-2XzHaS2X7JbH9kToj-g7hQJi1jLAnC8B-4vwIDIv72cFYzZoT8BGK0hHw |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_3390_machines13080633 |
| Cites_doi | 10.1109/access.2019.2924003 10.1016/j.inffus.2023.102005 10.1109/tim.2023.3345910 10.1016/j.measurement.2022.110826 10.1016/j.asoc.2023.110176 10.1109/tim.2025.3544700 10.1109/tim.2024.3413128 10.1016/j.measurement.2021.110460 10.1016/j.knosys.2020.105764 10.1016/j.aei.2024.102514 10.1109/mis.2022.3168356 10.3390/lubricants11020074 10.1109/tnnls.2024.3383467 10.1007/s10489-019-01624-z 10.1016/j.isatra.2021.11.040 10.1016/j.ymssp.2021.108018 10.1007/s10845-019-01522-8 10.1177/1475921719893594 10.1109/tnnls.2024.3483954 10.1109/icccnt56998.2023.10306417 10.1016/j.ymssp.2015.04.021 10.1109/tie.2021.3108726 10.1007/s40430-023-04142-9 10.1016/j.engappai.2021.104279 10.1016/j.chemolab.2022.104711 10.1016/j.ress.2024.110001 10.1109/tie.2017.2774777 10.1016/j.knosys.2020.105845 10.1145/1143844.1143945 10.1016/j.ymssp.2019.106587 10.1016/j.ins.2017.09.013 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2025.3580880 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 9 |
| ExternalDocumentID | 10_1109_TIM_2025_3580880 11040082 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Special Guiding Project for the Transformation of Scientific and Technological Achievements grantid: 202304021301012 – fundername: Shanxi Scholarship Council of China grantid: 2021-128 funderid: 10.13039/501100003398 – fundername: Special Fund for Science and Technology Innovation Teams of Shanxi Province grantid: 202304051001013 – fundername: Science and Technology Major Special Program of Shanxi grantid: 202301150401011 – fundername: Shanxi Basic Research Program grantid: 20210302124356 – fundername: Opening Project of Shanxi Key Laboratory of Advanced Manufacturing Technology grantid: XJZZ202102 – fundername: National Natural Science Foundation of China grantid: 52405566; 52275139; 52305140 funderid: 10.13039/501100001809 – fundername: Fundamental Research Program of Shanxi Province grantid: 202403021222145; 202403021222177 funderid: 10.13039/501100004480 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c294t-b3f26601a463e8681a35d27b3295cc99c923cbb59853e1f7d8dfae362f9c56fa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001518786900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Thu Aug 14 02:12:13 EDT 2025 Sat Nov 29 07:42:48 EST 2025 Tue Nov 18 22:21:56 EST 2025 Wed Aug 27 02:13:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-b3f26601a463e8681a35d27b3295cc99c923cbb59853e1f7d8dfae362f9c56fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6794-2065 0000-0002-5884-5060 0000-0001-8666-4585 0000-0001-5757-2972 0000-0001-6450-234X 0000-0001-6151-8848 0009-0007-9526-2458 |
| PQID | 3224679655 |
| PQPubID | 85462 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_11040082 proquest_journals_3224679655 crossref_primary_10_1109_TIM_2025_3580880 crossref_citationtrail_10_1109_TIM_2025_3580880 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref18 doi: 10.1109/access.2019.2924003 – ident: ref1 doi: 10.1016/j.inffus.2023.102005 – ident: ref4 doi: 10.1109/tim.2023.3345910 – ident: ref19 doi: 10.1016/j.measurement.2022.110826 – ident: ref27 doi: 10.1016/j.asoc.2023.110176 – ident: ref21 doi: 10.1109/tim.2025.3544700 – ident: ref22 doi: 10.1109/tim.2024.3413128 – ident: ref23 doi: 10.1016/j.measurement.2021.110460 – ident: ref24 doi: 10.1016/j.knosys.2020.105764 – ident: ref5 doi: 10.1016/j.aei.2024.102514 – ident: ref17 doi: 10.1109/mis.2022.3168356 – ident: ref20 doi: 10.3390/lubricants11020074 – ident: ref3 doi: 10.1109/tnnls.2024.3383467 – ident: ref10 doi: 10.1007/s10489-019-01624-z – ident: ref15 doi: 10.1016/j.isatra.2021.11.040 – ident: ref14 doi: 10.1016/j.ymssp.2021.108018 – ident: ref11 doi: 10.1007/s10845-019-01522-8 – ident: ref25 doi: 10.1177/1475921719893594 – ident: ref6 doi: 10.1109/tnnls.2024.3483954 – ident: ref16 doi: 10.1109/icccnt56998.2023.10306417 – ident: ref31 doi: 10.1016/j.ymssp.2015.04.021 – ident: ref7 doi: 10.1109/tie.2021.3108726 – ident: ref12 doi: 10.1007/s40430-023-04142-9 – ident: ref29 doi: 10.1016/j.engappai.2021.104279 – ident: ref26 doi: 10.1016/j.chemolab.2022.104711 – ident: ref28 doi: 10.1016/j.ress.2024.110001 – ident: ref30 doi: 10.1109/tie.2017.2774777 – ident: ref13 doi: 10.1016/j.knosys.2020.105845 – ident: ref8 doi: 10.1145/1143844.1143945 – ident: ref2 doi: 10.1016/j.ymssp.2019.106587 – ident: ref9 doi: 10.1016/j.ins.2017.09.013 |
| SSID | ssj0007647 |
| Score | 2.4429657 |
| Snippet | Due to the limitation of industrial conditions in production, raw sensor data are always shown as an unbalanced dataset, characterized by abundant normal... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Artificial intelligence Bearing-unbalanced data Data mining Datasets Fault diagnosis Generative adversarial networks multiencoder denoising autoencoder (DAE) Training Wasserstein generative adversarial networks (WGANs) |
| Title | Multifault Feature Wasserstein Generative Adversarial Networks for Fault Diagnosis in Unbalanced Data |
| URI | https://ieeexplore.ieee.org/document/11040082 https://www.proquest.com/docview/3224679655 |
| Volume | 74 |
| WOSCitedRecordID | wos001518786900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20KOjBb7FaJQcvHrbtfmSzOYpa9GDxUNHbkmRnoSCtdFt_vzPZbRVEwcuyh0xY9iWZl2TmDcBlEcvQuoSFbo0KiN-GgUYVBgWmLlLEb11pfbEJNRxmr6_6qUlW97kwiOiDz7DLr_4uv5i6BR-V9chVJeyz1mGduqmTtVbLrkqTWiAzpBlMtGB5J9nXvdHDI-0EI9nlO7-MFSC_-SBfVOXHSuzdy2D3nx-2BzsNjxTXNfD7sIaTA9j-pi54AJs-utNVh4A-zbY09BTM-RYzFC_GJ1pysUtRa0_zwid8gebK8LAUwzpEvBJEbMXAW9_WkXnjSpDZ88RyYKTDQtyauTmC58Hd6OY-aOorBC7SyTywcUnuuR-aJI0xS7PQxLKIlI0jLZ3T2hH5c9ZKTS4dw1IVWVEaJI9XaifT0sTH0JpMJ3gCAo1yyiokizgpmIZaokoay0RSN2nSht7yj-euER_nGhhvud-E9HVOGOWMUd5g1IarlcV7LbzxR9sjxuSrXQNHGzpLVPNmalZ5zBJ6SqdSnv5idgZb3Ht90NKB1ny2wHPYcB_zcTW78KPuExHL1Cw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH4abBPswAYU0Y0NH3bhENokdhwf0aBqNag4FI1bZDsvUiXUoqbl9_OekwISYhKXKAe_JMqz_X223_sewO8yVbHzkoVurY6I38aRQR1HJWY-0cRvfeVCsQk9Hue3t-a6TVYPuTCIGILP8JRvw1l-Ofcr3irrEVRJxqwN-KikTPpNutbTxKsz2UhkxjSGiRisTyX7pjcZXdFaMFGnfOqXswbkCxQKZVVezcUBYAZf3_lp32CnZZLirHH9LnzA2R58eaEvuAefQ3ynr_cBQ6JtZekqmPWtFij-2ZBqyeUuRaM-zVOfCCWaa8sdU4ybIPFaELUVg2B93sTmTWtBZjczx6GRHktxbpe2AzeDi8mfYdRWWIh8YuQycmlFAN2PrcxSzLM8tqkqE-3SxCjvjfFE_7xzyhCoY1zpMi8ri4R5lfEqq2x6AJuz-QwPQaDVXjuNZJHKkomoI7JksJKKHpPJLvTWf7zwrfw4V8G4K8IypG8K8lHBPipaH3Xh5MnivpHe-E_bDvvkuV3rji4crb1atIOzLlIW0dMmU-r7G2bHsDWcXF0Wl6Px3x-wzW9qtl2OYHO5WOFP-OQfltN68Sv0wEdDrtdz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifault+Feature+Wasserstein+Generative+Adversarial+Networks+for+Fault+Diagnosis+in+Unbalanced+Data&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Ren%2C+Weibo&rft.au=Wang%2C+Zhijian&rft.au=Chen%2C+Zhongxin&rft.au=Zhao%2C+Shun&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FTIM.2025.3580880&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2025_3580880 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |