Tea canopy detection algorithm based on multi-sensor data fusion

•Conduct feature analysis on the detection data of tea tree canopies to identify recognition pattern characteristics, leading to the construction of a canopy detection model.•Design an Onion Peeling algorithm for detecting tea tree canopies by fusing multi-sensor data; its convergence is demonstrate...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Smart agricultural technology Ročník 12; s. 101497
Hlavní autoři: Han, Yu, Song, Zhiyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2025
Elsevier
Témata:
ISSN:2772-3755, 2772-3755
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Conduct feature analysis on the detection data of tea tree canopies to identify recognition pattern characteristics, leading to the construction of a canopy detection model.•Design an Onion Peeling algorithm for detecting tea tree canopies by fusing multi-sensor data; its convergence is demonstrated along with an error analysis.•Apply the algorithm in developing an intelligent shape-adaptive tea-plucking machine equipped with multi high accuracy sensors. The proposed algorithm effectively identifies and eliminates outliers while accurately localizing the position of tea tree canopies within specified precision limits. The intelligent tea harvesting machine needs to follow the undulating changes of the tea canopy surface to plucking tea shoots automatically. To address the issue of precise localization of tea canopies, we propose a vertical detection model and algorithm based on multi-sensor information integration. Firstly, the feature analysis on the detection data of tea tree canopies is conducted to identify recognition pattern characteristics, leading to the construction of a canopy detection model. Subsequently, within this framework, an “Onion Peeling” algorithm is designed for detecting tea tree canopies by fusing multi-sensor data. And its convergence is demonstrated along with an error analysis. Finally, we apply this algorithm in developing an intelligent shape-adaptive tea-picking machine. The experiment results indicate that the proposed algorithm effectively identifies and eliminates outliers while accurately localizing the position of tea tree canopies within specified precision limits. The main contributions are as follows: 1) Construct a multi-sensor-based tea canopy position detection system, finding out the recognition pattern: concentrated data distribution area in data range; 2) Proposing the “Onion Peeling” algorithm for feature region detection, which can exclude outliers such as empty sensor readings and anomalous tea shoots, and accurately approximate the target area. Our method and algorithms outperform the-state-of-the-art technologies, providing effective technical support for adaptive harvesting of high-quality tea.
AbstractList •Conduct feature analysis on the detection data of tea tree canopies to identify recognition pattern characteristics, leading to the construction of a canopy detection model.•Design an Onion Peeling algorithm for detecting tea tree canopies by fusing multi-sensor data; its convergence is demonstrated along with an error analysis.•Apply the algorithm in developing an intelligent shape-adaptive tea-plucking machine equipped with multi high accuracy sensors. The proposed algorithm effectively identifies and eliminates outliers while accurately localizing the position of tea tree canopies within specified precision limits. The intelligent tea harvesting machine needs to follow the undulating changes of the tea canopy surface to plucking tea shoots automatically. To address the issue of precise localization of tea canopies, we propose a vertical detection model and algorithm based on multi-sensor information integration. Firstly, the feature analysis on the detection data of tea tree canopies is conducted to identify recognition pattern characteristics, leading to the construction of a canopy detection model. Subsequently, within this framework, an “Onion Peeling” algorithm is designed for detecting tea tree canopies by fusing multi-sensor data. And its convergence is demonstrated along with an error analysis. Finally, we apply this algorithm in developing an intelligent shape-adaptive tea-picking machine. The experiment results indicate that the proposed algorithm effectively identifies and eliminates outliers while accurately localizing the position of tea tree canopies within specified precision limits. The main contributions are as follows: 1) Construct a multi-sensor-based tea canopy position detection system, finding out the recognition pattern: concentrated data distribution area in data range; 2) Proposing the “Onion Peeling” algorithm for feature region detection, which can exclude outliers such as empty sensor readings and anomalous tea shoots, and accurately approximate the target area. Our method and algorithms outperform the-state-of-the-art technologies, providing effective technical support for adaptive harvesting of high-quality tea.
The intelligent tea harvesting machine needs to follow the undulating changes of the tea canopy surface to plucking tea shoots automatically. To address the issue of precise localization of tea canopies, we propose a vertical detection model and algorithm based on multi-sensor information integration. Firstly, the feature analysis on the detection data of tea tree canopies is conducted to identify recognition pattern characteristics, leading to the construction of a canopy detection model. Subsequently, within this framework, an “Onion Peeling” algorithm is designed for detecting tea tree canopies by fusing multi-sensor data. And its convergence is demonstrated along with an error analysis. Finally, we apply this algorithm in developing an intelligent shape-adaptive tea-picking machine. The experiment results indicate that the proposed algorithm effectively identifies and eliminates outliers while accurately localizing the position of tea tree canopies within specified precision limits. The main contributions are as follows: 1) Construct a multi-sensor-based tea canopy position detection system, finding out the recognition pattern: concentrated data distribution area in data range; 2) Proposing the “Onion Peeling” algorithm for feature region detection, which can exclude outliers such as empty sensor readings and anomalous tea shoots, and accurately approximate the target area. Our method and algorithms outperform the-state-of-the-art technologies, providing effective technical support for adaptive harvesting of high-quality tea.
ArticleNumber 101497
Author Han, Yu
Song, Zhiyu
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0001-7128-4547
  surname: Han
  fullname: Han, Yu
  email: hanyu@caas.cn
  organization: School of Automation, Southeast University, Nanjing 210096, China
– sequence: 2
  givenname: Zhiyu
  surname: Song
  fullname: Song, Zhiyu
  organization: Nanjing institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
BookMark eNp9kMtKxDAUhoMoOF6ewE1foGOStrksBGXwBoIbXYfT5kRTOs2QdIR5ezNTEVeucvg5_5fkOyPHYxiRkCtGl4wycd0vYcLuc8kpb_ZJreURWXApeVnJpjn-M5-Sy5R6SilXjVBaLcjtG0LRwRg2u8Ji5kw-jAUMHyH66XNdtJDQFjlab4fJlwnHFGJhYYLCbVPevSAnDoaElz_nOXl_uH9bPZUvr4_Pq7uXsuO6nkpoW6ts1aIE0Tq0QtmGo5Ta2aZyjiIV1KkamaxcLbkTjDqnFQfHNHMKqnPyPHNtgN5sol9D3JkA3hyCED8MxMl3A5pagqtqp1sQqq6Y0AC6oaqVgjUyX5RZ1czqYkgpovvlMWr2Tk1vDk7N3qmZnebWzdzC_M0vj9GkzuPYofUxe8vv8P_2vwFyvoIk
Cites_doi 10.3390/agriculture14122213
10.1109/ACCESS.2019.2958614
10.1016/j.compag.2020.105298
10.13031/aea.13116
10.3390/s110403803
10.1016/j.compag.2021.106149
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.atech.2025.101497
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2772-3755
ExternalDocumentID oai_doaj_org_article_47af34f9ba6843169aa9508b76157e06
10_1016_j_atech_2025_101497
S2772375525007282
GrantInformation_xml – fundername: The Key Laboratory for Crop production and Smart Agricultural of Yunnan Province
  grantid: 2023ZHNY06
GroupedDBID 6I.
AAFTH
AAHBH
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
AAYXX
CITATION
ID FETCH-LOGICAL-c294t-abbd8d3be7a6bfed68d52e779fd53ff0e060f84e173f472f610ff982af191f8a3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001610850700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2772-3755
IngestDate Mon Nov 10 19:22:55 EST 2025
Thu Nov 27 00:48:45 EST 2025
Sat Nov 29 17:14:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Tea
Multi-sensor information integration
Canopy detection algorithm
Harvesting machine
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-abbd8d3be7a6bfed68d52e779fd53ff0e060f84e173f472f610ff982af191f8a3
ORCID 0000-0001-7128-4547
OpenAccessLink https://doaj.org/article/47af34f9ba6843169aa9508b76157e06
ParticipantIDs doaj_primary_oai_doaj_org_article_47af34f9ba6843169aa9508b76157e06
crossref_primary_10_1016_j_atech_2025_101497
elsevier_sciencedirect_doi_10_1016_j_atech_2025_101497
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Smart agricultural technology
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References (bib0011) 2007
Zhang, Chen, Wang, Zhang (bib0025) 2014; 45
Thangavel, Murthi (bib0014) 2017
(bib0010) 2015
Fang, Liao, Liu (bib0003) 2017; 38
Zhang, LV (bib0027) 2016; 28
Zhao, Bian, Chen, Dong, Wu, Jia, Mao, Xiong (bib0029) 2022; 42
Yang, Chen, Chen, Ma, Deng, Li, Li (bib0021) 2019; 7
Yan (bib0020) 2019
Shao, Wu (bib0012) 2020; 58
Yang, Yang, Tian, Yang (bib0022) 2009; 40
Wang, Zeng, Liu (bib0017) 2011; 11
Vu, Le, Tran, Nguyen (bib0015) 2013
Zhang, Zhang, Chen, Dai, Li, Imou, Liu, Li (bib0028) 2019; 12
Wu, Huan, Chen, Dong, Shao, Bian, Fan (bib0019) 2023; 43
Zhang (bib0024) 2020
Dong, Liu, Li, Yi, Wang (bib0002) 2024
Han, Song, Chen (bib0006) 2022; 3
Yu, Xie, Li, Guo, Dai, Fang, Li (bib0023) 2024; 14
Han, Song, Chen, Mei, Yang (bib0007) 2022; 38
Han, Xiao, Song, Ding (bib0004) 2019; 35
Han, Xiao, Song, Chen, Ding, Mei (bib0005) 2021; 14
Zheng, Fu, Xue, Ye, Yu (bib0026) 2023; 44
Wang, Liu (bib0016) 2015; 12
Chen, Chen (bib0001) 2020; 171
Lv, Xia, Fang, Zhou (bib0009) 2019; 31
Li, He, Jia, Lv, Chen, Qiao, Wu (bib0008) 2021; 185
Wu (bib0018) 2017
Sobiya, Manusa, Gopika, Kanimozhi, Varsheni, Saravana (bib0013) 2021
Yang (10.1016/j.atech.2025.101497_bib0021) 2019; 7
Yang (10.1016/j.atech.2025.101497_bib0022) 2009; 40
Zhang (10.1016/j.atech.2025.101497_bib0024) 2020
Yan (10.1016/j.atech.2025.101497_bib0020) 2019
Wu (10.1016/j.atech.2025.101497_bib0018) 2017
Zheng (10.1016/j.atech.2025.101497_bib0026) 2023; 44
Yu (10.1016/j.atech.2025.101497_bib0023) 2024; 14
Dong (10.1016/j.atech.2025.101497_bib0002) 2024
Zhao (10.1016/j.atech.2025.101497_bib0029) 2022; 42
(10.1016/j.atech.2025.101497_bib0010) 2015
Han (10.1016/j.atech.2025.101497_bib0007) 2022; 38
(10.1016/j.atech.2025.101497_bib0011) 2007
Sobiya (10.1016/j.atech.2025.101497_bib0013) 2021
Wang (10.1016/j.atech.2025.101497_bib0017) 2011; 11
Thangavel (10.1016/j.atech.2025.101497_bib0014) 2017
Zhang (10.1016/j.atech.2025.101497_bib0025) 2014; 45
Fang (10.1016/j.atech.2025.101497_bib0003) 2017; 38
Wu (10.1016/j.atech.2025.101497_bib0019) 2023; 43
Zhang (10.1016/j.atech.2025.101497_bib0028) 2019; 12
Chen (10.1016/j.atech.2025.101497_bib0001) 2020; 171
Zhang (10.1016/j.atech.2025.101497_bib0027) 2016; 28
Li (10.1016/j.atech.2025.101497_bib0008) 2021; 185
Vu (10.1016/j.atech.2025.101497_bib0015) 2013
Wang (10.1016/j.atech.2025.101497_bib0016) 2015; 12
Han (10.1016/j.atech.2025.101497_bib0005) 2021; 14
Han (10.1016/j.atech.2025.101497_bib0004) 2019; 35
Lv (10.1016/j.atech.2025.101497_bib0009) 2019; 31
Shao (10.1016/j.atech.2025.101497_bib0012) 2020; 58
Han (10.1016/j.atech.2025.101497_bib0006) 2022; 3
References_xml – volume: 12
  start-page: 120
  year: 2015
  end-page: 126
  ident: bib0016
  article-title: Intelligent Identification for tea state based on deep learning
  publication-title: J. Chongqing Univ. Technol. Nat. Sci.;
– volume: 38
  start-page: 134
  year: 2017
  end-page: 138
  ident: bib0003
  article-title: Research on tea leaf of image segmentation and recognition using improved JSEG algorithm
  publication-title: Food Ind.
– volume: 7
  start-page: 180998
  year: 2019
  end-page: 181011
  ident: bib0021
  article-title: Tender tea shoots recognition and positioning for picking robot using improved yolo-v3 model
  publication-title: IEEE Access;
– start-page: 1382
  year: 2024
  end-page: 1385
  ident: bib0002
  article-title: Ordinary Tea Shoot Detection under Different Lighting Conditions
  publication-title: 2024 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML)
– volume: 42
  start-page: 263
  year: 2022
  end-page: 276
  ident: bib0029
  article-title: Development and test for distributed control prototype of the riding profiling tea harvester
  publication-title: J. Tea Sci.;
– year: 2019
  ident: bib0020
  article-title: MA thesis
– volume: 44
  start-page: 28
  year: 2023
  end-page: 35
  ident: bib0026
  article-title: Research Status and prospect of tea mechanized picking technology
  publication-title: J. Chin. Agric. Mech.;
– volume: 28
  start-page: 100
  year: 2016
  end-page: 104
  ident: bib0027
  article-title: Study on Automatic Segmentation of Tea Sprouts under Natural Conditions
  publication-title: J. Heilongjiang Bayi Agric. Univ.;
– volume: 43
  start-page: 135
  year: 2023
  end-page: 145
  ident: bib0019
  article-title: Research and experiment on profiling method of tea picker based on fusion of 2D-LiDAR and attitude and heading reference system
  publication-title: J. Tea Sci.;
– start-page: 1
  year: 2017
  end-page: 10
  ident: bib0014
  article-title: A semi-automated system for smart harvesting of tea leaves
  publication-title: 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS); Coimbatore; India
– volume: 171
  year: 2020
  ident: bib0001
  article-title: Localizing plucking points of tea leaves using deep convolutional neural networks
  publication-title: Comput. Electron. Agric.
– volume: 185
  year: 2021
  ident: bib0008
  article-title: In-field tea shoot detection and 3D localization using an RGB-D camera
  publication-title: Comput. Electron. Agric.
– volume: 11
  start-page: 3803
  year: 2011
  end-page: 3815
  ident: bib0017
  article-title: Three-Dimensional Modeling of Tea-Shoots Using Images and Models
  publication-title: Sensors;
– volume: 38
  start-page: 35
  year: 2022
  end-page: 43
  ident: bib0007
  article-title: Optimization and experiment of arc type reciprocating double-acting tea picking cutter
  publication-title: Trans. Chin. Soc. Agric. Eng. Trans. CSAE
– volume: 40
  start-page: 119
  year: 2009
  end-page: 123
  ident: bib0022
  article-title: Recognition of the tea sprout based on color and shape features
  publication-title: Trans. Agric. Mach.;
– volume: 45
  start-page: 61
  year: 2014
  end-page: 65
  ident: bib0025
  article-title: Positioning method for tea picking using active computer vision
  publication-title: Trans.Agric. Mach.;
– start-page: 3775
  year: 2013
  end-page: 3779
  ident: bib0015
  article-title: A vision-based method for automatizing tea shoots detection
  publication-title: IEEE International Conference on Image Processing; Melbourne; VIC; Australia
– year: 2015
  ident: bib0010
  article-title: Tea Picker Operation quality. NY/T2614—2014
– volume: 31
  start-page: 72
  year: 2019
  end-page: 78
  ident: bib0009
  article-title: Research on intelligent identification of tea sprouts state based on AlexNet
  publication-title: J. Heilongjiang Bayi Agric. Univ.
– year: 2007
  ident: bib0011
  article-title: Standards of Machinery Industry of the People’s Republic of China-Test Method For Tea Plucking Machine. JB/T 6281.2—2007
– start-page: 1
  year: 2021
  end-page: 5
  ident: bib0013
  article-title: Robotic Arm Enabled Automatic Tea Harvester
  publication-title: 2021 International Conference on Advancements in Electrical; Electronics; Communication; Computing and Automation (ICAECA); Coimbatore; India
– volume: 14
  start-page: 2213
  year: 2024
  ident: bib0023
  article-title: Development and Experiment of Adaptive Oolong Tea Harvesting Robot Based on Visual Localization
  publication-title: Agriculture;
– volume: 3
  start-page: 1
  year: 2022
  end-page: 6
  ident: bib0006
  article-title: Design and experiment of 4CJ-1200F intelligent tea plucking machine
  publication-title: J. Intell. Agric. Mech.
– volume: 58
  start-page: 50
  year: 2020
  end-page: 53
  ident: bib0012
  article-title: Tea bud positioning method based on visual measurement
  publication-title: Agric. Equip. Veh. Eng.;
– volume: 14
  start-page: 75
  year: 2021
  end-page: 84
  ident: bib0005
  article-title: Design and experiments of 4CJ-1200 self-propelled tea plucking machine
  publication-title: Int. J. Agric. Biol. Eng.
– year: 2020
  ident: bib0024
  article-title: MA thesis
– volume: 12
  start-page: 6
  year: 2019
  end-page: 9
  ident: bib0028
  article-title: Real-time monitoring of optimum timing for harvesting fresh tea leaves based on machine vision
  publication-title: Int. J. Agric. Biol. Eng.;
– year: 2017
  ident: bib0018
  article-title: MA thesis
– volume: 35
  start-page: 979
  year: 2019
  end-page: 986
  ident: bib0004
  article-title: Design and Evaluation of Tea-Plucking Machine for Improving Quality of Tea [J]
  publication-title: Appl. Eng. Agric.
– year: 2017
  ident: 10.1016/j.atech.2025.101497_bib0018
– start-page: 1
  year: 2021
  ident: 10.1016/j.atech.2025.101497_bib0013
  article-title: Robotic Arm Enabled Automatic Tea Harvester
– volume: 14
  start-page: 2213
  issue: 12
  year: 2024
  ident: 10.1016/j.atech.2025.101497_bib0023
  article-title: Development and Experiment of Adaptive Oolong Tea Harvesting Robot Based on Visual Localization
  publication-title: Agriculture;
  doi: 10.3390/agriculture14122213
– volume: 7
  start-page: 180998
  year: 2019
  ident: 10.1016/j.atech.2025.101497_bib0021
  article-title: Tender tea shoots recognition and positioning for picking robot using improved yolo-v3 model
  publication-title: IEEE Access;
  doi: 10.1109/ACCESS.2019.2958614
– year: 2020
  ident: 10.1016/j.atech.2025.101497_bib0024
– volume: 3
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.atech.2025.101497_bib0006
  article-title: Design and experiment of 4CJ-1200F intelligent tea plucking machine
  publication-title: J. Intell. Agric. Mech.
– volume: 38
  start-page: 134
  issue: 04
  year: 2017
  ident: 10.1016/j.atech.2025.101497_bib0003
  article-title: Research on tea leaf of image segmentation and recognition using improved JSEG algorithm
  publication-title: Food Ind.
– volume: 38
  start-page: 35
  issue: 24
  year: 2022
  ident: 10.1016/j.atech.2025.101497_bib0007
  article-title: Optimization and experiment of arc type reciprocating double-acting tea picking cutter
  publication-title: Trans. Chin. Soc. Agric. Eng. Trans. CSAE
– year: 2019
  ident: 10.1016/j.atech.2025.101497_bib0020
– volume: 58
  start-page: 50
  issue: 09
  year: 2020
  ident: 10.1016/j.atech.2025.101497_bib0012
  article-title: Tea bud positioning method based on visual measurement
  publication-title: Agric. Equip. Veh. Eng.;
– start-page: 1382
  year: 2024
  ident: 10.1016/j.atech.2025.101497_bib0002
  article-title: Ordinary Tea Shoot Detection under Different Lighting Conditions
– volume: 171
  year: 2020
  ident: 10.1016/j.atech.2025.101497_bib0001
  article-title: Localizing plucking points of tea leaves using deep convolutional neural networks
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105298
– volume: 42
  start-page: 263
  issue: 02
  year: 2022
  ident: 10.1016/j.atech.2025.101497_bib0029
  article-title: Development and test for distributed control prototype of the riding profiling tea harvester
  publication-title: J. Tea Sci.;
– year: 2007
  ident: 10.1016/j.atech.2025.101497_bib0011
– volume: 31
  start-page: 72
  issue: 2
  year: 2019
  ident: 10.1016/j.atech.2025.101497_bib0009
  article-title: Research on intelligent identification of tea sprouts state based on AlexNet
  publication-title: J. Heilongjiang Bayi Agric. Univ.
– volume: 44
  start-page: 28
  issue: 9
  year: 2023
  ident: 10.1016/j.atech.2025.101497_bib0026
  article-title: Research Status and prospect of tea mechanized picking technology
  publication-title: J. Chin. Agric. Mech.;
– volume: 35
  start-page: 979
  issue: 6
  year: 2019
  ident: 10.1016/j.atech.2025.101497_bib0004
  article-title: Design and Evaluation of Tea-Plucking Machine for Improving Quality of Tea [J]
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/aea.13116
– volume: 43
  start-page: 135
  issue: 1
  year: 2023
  ident: 10.1016/j.atech.2025.101497_bib0019
  article-title: Research and experiment on profiling method of tea picker based on fusion of 2D-LiDAR and attitude and heading reference system
  publication-title: J. Tea Sci.;
– volume: 45
  start-page: 61
  issue: 9
  year: 2014
  ident: 10.1016/j.atech.2025.101497_bib0025
  article-title: Positioning method for tea picking using active computer vision
  publication-title: Trans.Agric. Mach.;
– volume: 14
  start-page: 75
  issue: 06
  year: 2021
  ident: 10.1016/j.atech.2025.101497_bib0005
  article-title: Design and experiments of 4CJ-1200 self-propelled tea plucking machine
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 11
  start-page: 3803
  year: 2011
  ident: 10.1016/j.atech.2025.101497_bib0017
  article-title: Three-Dimensional Modeling of Tea-Shoots Using Images and Models
  publication-title: Sensors;
  doi: 10.3390/s110403803
– volume: 40
  start-page: 119
  issue: supplement
  year: 2009
  ident: 10.1016/j.atech.2025.101497_bib0022
  article-title: Recognition of the tea sprout based on color and shape features
  publication-title: Trans. Agric. Mach.;
– volume: 185
  year: 2021
  ident: 10.1016/j.atech.2025.101497_bib0008
  article-title: In-field tea shoot detection and 3D localization using an RGB-D camera
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106149
– year: 2015
  ident: 10.1016/j.atech.2025.101497_bib0010
– volume: 12
  start-page: 6
  issue: 1
  year: 2019
  ident: 10.1016/j.atech.2025.101497_bib0028
  article-title: Real-time monitoring of optimum timing for harvesting fresh tea leaves based on machine vision
  publication-title: Int. J. Agric. Biol. Eng.;
– volume: 12
  start-page: 120
  year: 2015
  ident: 10.1016/j.atech.2025.101497_bib0016
  article-title: Intelligent Identification for tea state based on deep learning
  publication-title: J. Chongqing Univ. Technol. Nat. Sci.;
– start-page: 3775
  year: 2013
  ident: 10.1016/j.atech.2025.101497_bib0015
  article-title: A vision-based method for automatizing tea shoots detection
– start-page: 1
  year: 2017
  ident: 10.1016/j.atech.2025.101497_bib0014
  article-title: A semi-automated system for smart harvesting of tea leaves
– volume: 28
  start-page: 100
  issue: 2
  year: 2016
  ident: 10.1016/j.atech.2025.101497_bib0027
  article-title: Study on Automatic Segmentation of Tea Sprouts under Natural Conditions
  publication-title: J. Heilongjiang Bayi Agric. Univ.;
SSID ssj0002856898
Score 2.310525
Snippet •Conduct feature analysis on the detection data of tea tree canopies to identify recognition pattern characteristics, leading to the construction of a canopy...
The intelligent tea harvesting machine needs to follow the undulating changes of the tea canopy surface to plucking tea shoots automatically. To address the...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 101497
SubjectTerms Canopy detection algorithm
Harvesting machine
Multi-sensor information integration
Tea
Title Tea canopy detection algorithm based on multi-sensor data fusion
URI https://dx.doi.org/10.1016/j.atech.2025.101497
https://doaj.org/article/47af34f9ba6843169aa9508b76157e06
Volume 12
WOSCitedRecordID wos001610850700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2772-3755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002856898
  issn: 2772-3755
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2772-3755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002856898
  issn: 2772-3755
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcCCQIAoX_LASESaOP7Y-FArBqgYitQtsmMftIIEtSkSC7-ds5OiTLCwZDhFdvIu0ruzXt4Rcm65SJEWXCSV0BEbFFmExRGLdAzCFoZnAMHE9V6Mx3I6VY-dUV9eE9bYAzfAXTKhIWWgjObS_7attPaDSw2235lwjdl2LFSnmZqHI6OMSyXXNkNB0KW9Kyp2hEnmI8zbPHWoKDj2dxipwzKjHbLdlof0unmsXbLhyj1yNXGaIgTV-ye1rg7iqZLq1-cKO_uXN-qZyFIMBXVgtMTOtFpQr_2ksPKnYfvkaTSc3N5F7eSDqEgUqyNtjJU2NU5obsBZLi3iKYQCm6UAMb53DJK5gUiBiQSwBgJQMtGA7RdInR6QXlmV7pBQZRNprHaJlMD0gEvAkiaxSNRI_QbiPrlYg5C_NwYX-Vr5Nc8DZrnHLG8w65MbD9TPrd6dOgQwZ3mbs_yvnPUJX8Oct0TfEDguNftt96P_2P2YbPklG03KCenVi5U7JZvFRz1bLs7Cd4TXh6_hN89zzSY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tea+canopy+detection+algorithm+based+on+multi-sensor+data+fusion&rft.jtitle=Smart+agricultural+technology&rft.au=Yu+Han&rft.au=Zhiyu+Song&rft.date=2025-12-01&rft.pub=Elsevier&rft.eissn=2772-3755&rft.volume=12&rft.spage=101497&rft_id=info:doi/10.1016%2Fj.atech.2025.101497&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_47af34f9ba6843169aa9508b76157e06
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-3755&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-3755&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-3755&client=summon