DEMAE: Diffusion-Enhanced Masked Autoencoder for Hyperspectral Image Classification With Few Labeled Samples

Unlike other deep learning (DL) models, Transformer has the ability to extract long-range dependency features from hyperspectral image (HSI) data. Masked autoencoder (MAE), which is based on Transformer architecture, employs a "mask-reconstruction" strategy for training, allowing the model...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on geoscience and remote sensing Ročník 62; s. 1 - 16
Hlavní autori: Li, Ziyu, Xue, Zhaohui, Jia, Mingming, Nie, Xiangyu, Wu, Hao, Zhang, Mengxue, Su, Hongjun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0196-2892, 1558-0644
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Unlike other deep learning (DL) models, Transformer has the ability to extract long-range dependency features from hyperspectral image (HSI) data. Masked autoencoder (MAE), which is based on Transformer architecture, employs a "mask-reconstruction" strategy for training, allowing the model to be effective for downstream tasks. However, existing MAE-based methods only apply spectral or spatial masking to HSI and reconstruct them for feature learning, which is too simplistic and insufficient for the model to learn robust features. Additionally, the issue of lacking labeled samples in HSI and the primary objective of MAE to reduce the reliance on labeled samples are often overlooked. To address these issues, we are inspired by diffusion-based representation learning and propose diffusion-enhanced MAE (DEMAE) for HSI classification with few labeled samples. First, an asymmetric encoder-decoder framework is constructed as the backbone by stacking both conditional and standard Transformer blocks. Second, we devise an auxiliary task aimed at simultaneous denoising and reconstruction, facilitating heuristic feature learning from HSI data. Third, the encoder of DEMAE is isolated for training with few labeled samples. Finally, the encoder is used for classification, and a novel signal-to-noise ratio enhanced (SNR-Enhanced) loss function is introduced to regularize the model training process. The performance of DEMAE is evaluated on four benchmark datasets, demonstrating its superiority in classification accuracy and mapping capabilities on unlabeled areas compared to existing state-of-the-art methods with few labeled samples. The source code will be available online at https://github.com/ZhaohuiXue/DEMAE .
AbstractList Unlike other deep learning (DL) models, Transformer has the ability to extract long-range dependency features from hyperspectral image (HSI) data. Masked autoencoder (MAE), which is based on Transformer architecture, employs a “mask-reconstruction” strategy for training, allowing the model to be effective for downstream tasks. However, existing MAE-based methods only apply spectral or spatial masking to HSI and reconstruct them for feature learning, which is too simplistic and insufficient for the model to learn robust features. Additionally, the issue of lacking labeled samples in HSI and the primary objective of MAE to reduce the reliance on labeled samples are often overlooked. To address these issues, we are inspired by diffusion-based representation learning and propose diffusion-enhanced MAE (DEMAE) for HSI classification with few labeled samples. First, an asymmetric encoder–decoder framework is constructed as the backbone by stacking both conditional and standard Transformer blocks. Second, we devise an auxiliary task aimed at simultaneous denoising and reconstruction, facilitating heuristic feature learning from HSI data. Third, the encoder of DEMAE is isolated for training with few labeled samples. Finally, the encoder is used for classification, and a novel signal-to-noise ratio enhanced (SNR-Enhanced) loss function is introduced to regularize the model training process. The performance of DEMAE is evaluated on four benchmark datasets, demonstrating its superiority in classification accuracy and mapping capabilities on unlabeled areas compared to existing state-of-the-art methods with few labeled samples. The source code will be available online at https://github.com/ZhaohuiXue/DEMAE .
Author Zhang, Mengxue
Wu, Hao
Su, Hongjun
Li, Ziyu
Xue, Zhaohui
Nie, Xiangyu
Jia, Mingming
Author_xml – sequence: 1
  givenname: Ziyu
  orcidid: 0000-0002-6520-2530
  surname: Li
  fullname: Li, Ziyu
  organization: College of Geography and Remote Sensing, Hohai University, Nanjing, China
– sequence: 2
  givenname: Zhaohui
  orcidid: 0000-0001-6253-2967
  surname: Xue
  fullname: Xue, Zhaohui
  organization: College of Geography and Remote Sensing, Hohai University, Nanjing, China
– sequence: 3
  givenname: Mingming
  orcidid: 0000-0002-4548-899X
  surname: Jia
  fullname: Jia, Mingming
  email: jiamingming@iga.ac.cn
  organization: Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
– sequence: 4
  givenname: Xiangyu
  orcidid: 0009-0001-5095-6401
  surname: Nie
  fullname: Nie, Xiangyu
  organization: College of Geography and Remote Sensing, Hohai University, Nanjing, China
– sequence: 5
  givenname: Hao
  orcidid: 0000-0001-7340-6536
  surname: Wu
  fullname: Wu, Hao
  organization: College of Geography and Remote Sensing, Hohai University, Nanjing, China
– sequence: 6
  givenname: Mengxue
  orcidid: 0000-0002-8587-4334
  surname: Zhang
  fullname: Zhang, Mengxue
  organization: Image and Signal Processing (ISP) Group, University of València, València, Spain
– sequence: 7
  givenname: Hongjun
  orcidid: 0000-0002-8991-8568
  surname: Su
  fullname: Su, Hongjun
  organization: College of Geography and Remote Sensing, Hohai University, Nanjing, China
BookMark eNp9kEtLAzEUhYMoWB8_QHARcD01mSTTxF2ptQoVwQcuh9vkRqPTmTGZIv57p7YLceHqbL7vXO45ILt1UyMhJ5wNOWfm_HF2_zDMWS6HQkplDN8hA66Uzlgh5S4ZMG6KLNcm3ycHKb0xxqXiowGpLqe34-kFvQzer1Jo6mxav0Jt0dFbSO99jFddg7VtHEbqm0ivv1qMqUXbRajozRJekE4qSCn4YKHrK-hz6F7pFX7SOSyw6jseYNlWmI7Inocq4fE2D8nT1fRxcp3N72Y3k_E8s7mRXQZKFIVnymkUKLnWjoHiduEsLoRbeF7AiIGDgmkBIyMFFE5L1WO55t45cUjONr1tbD5WmLryrVnFuj9ZCma01jmXsqdGG8rGJqWIvrSh-3mg_yxUJWfletpyPW25nrbcTtub_I_ZxrCE-PWvc7pxAiL-4gthpBLiG_jwh0Q
CODEN IGRSD2
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124277
crossref_primary_10_1007_s11227_025_07607_x
crossref_primary_10_1109_TGRS_2024_3509720
crossref_primary_10_1109_TGRS_2025_3584804
crossref_primary_10_1109_TGRS_2024_3495525
crossref_primary_10_1109_TGRS_2025_3586287
Cites_doi 10.1109/TGRS.2024.3365719
10.1109/TGRS.2024.3407967
10.1016/j.isprsjprs.2023.05.025
10.1109/TGRS.2023.3310023
10.1609/aaai.v38i6.28392
10.1109/ICCV51070.2023.01110
10.1109/JSTARS.2022.3174135
10.3390/rs13030498
10.1016/j.rse.2023.113856
10.1109/TGRS.2023.3324497
10.1109/TGRS.2023.3315678
10.1109/TGRS.2022.3181501
10.3390/rs13112216
10.1109/TGRS.2022.3144158
10.1109/TGRS.2021.3130716
10.3390/rs12060923
10.1109/ICCV51070.2023.01448
10.1109/TGRS.2023.3279834
10.1109/79.974718
10.1109/TGRS.2024.3408475
10.1109/JSTARS.2023.3294623
10.1109/TGRS.2018.2827407
10.1109/TGRS.2023.3344782
10.1109/TGRS.2019.2908756
10.1109/TGRS.2024.3407206
10.1109/JSTARS.2020.3004973
10.1109/TGRS.2021.3139099
10.1109/TGRS.2022.3207933
10.1109/TGRS.2023.3264235
10.1117/1.JRS.15.031501
10.1109/TGRS.2023.3310489
10.1109/TGRS.2022.3217892
10.1109/TGRS.2021.3057066
10.1109/MGRS.2019.2902525
10.1016/j.neucom.2023.03.025
10.1109/TPAMI.2024.3362475
10.1016/j.neucom.2021.03.091
10.1109/TGRS.2017.2755542
10.1109/TGRS.2021.3057768
10.59717/j.xinn-geo.2024.100055
10.1109/TIP.2023.3322046
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3445991
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 16
ExternalDocumentID 10_1109_TGRS_2024_3445991
10639453
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42271324
  funderid: 10.13039/501100001809
– fundername: Postgraduate Research and Practice Innovation Program of Jiangsu Province
  grantid: KYCX24_0885
– fundername: Project on Excellent Post-Graduate Dissertation of Hohai University
  funderid: 10.13039/501100015973
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20221506
  funderid: 10.13039/501100004608
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences; Youth Innovation Promotion Association of Chinese Academy of Sciences
  grantid: 2021227
  funderid: 10.13039/501100004739
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-a5366f05d8e3e4188d0a51cbdceb3dbf16a70ada6083a7943a6d8458d0281fdd3
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001303543600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 10:07:13 EDT 2025
Sat Nov 29 03:32:40 EST 2025
Tue Nov 18 21:34:59 EST 2025
Wed Aug 27 02:03:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-a5366f05d8e3e4188d0a51cbdceb3dbf16a70ada6083a7943a6d8458d0281fdd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8587-4334
0009-0001-5095-6401
0000-0002-4548-899X
0000-0001-6253-2967
0000-0002-8991-8568
0000-0001-7340-6536
0000-0002-6520-2530
PQID 3098882144
PQPubID 85465
PageCount 16
ParticipantIDs ieee_primary_10639453
crossref_primary_10_1109_TGRS_2024_3445991
proquest_journals_3098882144
crossref_citationtrail_10_1109_TGRS_2024_3445991
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
Ho (ref27) 2020
ref10
ref54
Preechakul (ref28) 2021
ref17
ref19
ref18
Asiedu (ref37) 2022
ref51
ref50
ref46
ref45
ref48
ref47
ref42
Baranchuk (ref36) 2021
ref41
ref44
Gui (ref16) 2023
Zhang (ref43) 2023
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Hudson (ref30) 2023
ref40
Bao (ref34) 2022
Peebles (ref33) 2022
ref2
ref1
ref39
ref38
Tao Hu (ref31) 2023
ref24
ref23
ref26
Chen (ref32) 2024
ref25
ref20
ref22
He (ref21) 2021
Bao (ref35) 2023
ref29
References_xml – ident: ref51
  doi: 10.1109/TGRS.2024.3365719
– year: 2023
  ident: ref16
  article-title: A survey on self-supervised learning: Algorithms, applications, and future trends
  publication-title: arXiv:2301.05712
– year: 2023
  ident: ref31
  article-title: Guided diffusion from self-supervised diffusion features
  publication-title: arXiv:2312.08825
– ident: ref52
  doi: 10.1109/TGRS.2024.3407967
– ident: ref5
  doi: 10.1016/j.isprsjprs.2023.05.025
– year: 2023
  ident: ref30
  article-title: SODA: Bottleneck diffusion models for representation learning
  publication-title: arXiv:2311.17901
– ident: ref44
  doi: 10.1109/TGRS.2023.3310023
– ident: ref38
  doi: 10.1609/aaai.v38i6.28392
– ident: ref39
  doi: 10.1109/ICCV51070.2023.01110
– ident: ref14
  doi: 10.1109/JSTARS.2022.3174135
– ident: ref10
  doi: 10.3390/rs13030498
– ident: ref54
  doi: 10.1016/j.rse.2023.113856
– ident: ref18
  doi: 10.1109/TGRS.2023.3324497
– ident: ref24
  doi: 10.1109/TGRS.2023.3315678
– ident: ref48
  doi: 10.1109/TGRS.2022.3181501
– ident: ref11
  doi: 10.3390/rs13112216
– ident: ref13
  doi: 10.1109/TGRS.2022.3144158
– ident: ref12
  doi: 10.1109/TGRS.2021.3130716
– ident: ref47
  doi: 10.3390/rs12060923
– ident: ref29
  doi: 10.1109/ICCV51070.2023.01448
– ident: ref50
  doi: 10.1109/TGRS.2023.3279834
– year: 2022
  ident: ref33
  article-title: Scalable diffusion models with transformers
  publication-title: arXiv:2212.09748
– year: 2021
  ident: ref28
  article-title: Diffusion autoencoders: Toward a meaningful and decodable representation
  publication-title: arXiv:2111.15640
– ident: ref1
  doi: 10.1109/79.974718
– year: 2021
  ident: ref36
  article-title: Label-efficient semantic segmentation with diffusion models
  publication-title: arXiv:2112.03126
– ident: ref42
  doi: 10.1109/TGRS.2024.3408475
– ident: ref41
  doi: 10.1109/JSTARS.2023.3294623
– ident: ref7
  doi: 10.1109/TGRS.2018.2827407
– ident: ref25
  doi: 10.1109/TGRS.2023.3344782
– year: 2023
  ident: ref35
  article-title: One transformer fits all distributions in multi-modal diffusion at scale
  publication-title: arXiv:2303.06555
– year: 2022
  ident: ref37
  article-title: Decoder denoising pretraining for semantic segmentation
  publication-title: arXiv:2205.11423
– ident: ref8
  doi: 10.1109/TGRS.2019.2908756
– ident: ref45
  doi: 10.1109/TGRS.2024.3407206
– ident: ref46
  doi: 10.1109/JSTARS.2020.3004973
– ident: ref19
  doi: 10.1109/TGRS.2021.3139099
– ident: ref15
  doi: 10.1109/TGRS.2022.3207933
– ident: ref23
  doi: 10.1109/TGRS.2023.3264235
– year: 2024
  ident: ref32
  article-title: Deconstructing denoising diffusion models for self-supervised learning
  publication-title: arXiv:2401.14404
– ident: ref3
  doi: 10.1117/1.JRS.15.031501
– year: 2020
  ident: ref27
  article-title: Denoising diffusion probabilistic models
  publication-title: arXiv:2006.11239
– ident: ref17
  doi: 10.1109/TGRS.2023.3310489
– ident: ref22
  doi: 10.1109/TGRS.2022.3217892
– ident: ref49
  doi: 10.1109/TGRS.2021.3057066
– ident: ref4
  doi: 10.1109/MGRS.2019.2902525
– year: 2023
  ident: ref43
  article-title: DiffUCD: Unsupervised hyperspectral image change detection with semantic correlation diffusion model
  publication-title: arXiv:2305.12410
– ident: ref2
  doi: 10.1016/j.neucom.2023.03.025
– year: 2021
  ident: ref21
  article-title: Masked autoencoders are scalable vision learners
  publication-title: arXiv:2111.06377
– ident: ref26
  doi: 10.1109/TPAMI.2024.3362475
– ident: ref9
  doi: 10.1016/j.neucom.2021.03.091
– year: 2022
  ident: ref34
  article-title: All are worth words: A ViT backbone for diffusion models
  publication-title: arXiv:2209.12152
– ident: ref6
  doi: 10.1109/TGRS.2017.2755542
– ident: ref20
  doi: 10.1109/TGRS.2021.3057768
– ident: ref53
  doi: 10.59717/j.xinn-geo.2024.100055
– ident: ref40
  doi: 10.1109/TIP.2023.3322046
SSID ssj0014517
Score 2.4687054
Snippet Unlike other deep learning (DL) models, Transformer has the ability to extract long-range dependency features from hyperspectral image (HSI) data. Masked...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Classification
Coders
Data models
Deep learning
Diffusion
Diffusion barriers
Diffusion models
Feature extraction
few labeled samples
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Image enhancement
Image reconstruction
Machine learning
masked autoencoder (MAE)
Signal classification
Signal to noise ratio
Simultaneous discrimination learning
Source code
Spatial discrimination learning
State-of-the-art reviews
Task analysis
Training
Transformer
Transformers
Title DEMAE: Diffusion-Enhanced Masked Autoencoder for Hyperspectral Image Classification With Few Labeled Samples
URI https://ieeexplore.ieee.org/document/10639453
https://www.proquest.com/docview/3098882144
Volume 62
WOSCitedRecordID wos001303543600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UFPTgW1xf5OBJqKZtmjbeFt1VQUV8oLeS5sEu6q5su_r3naRVFFHw1B4mbcnXycxkMt8A7BYGvW6mZJAqpgKmGQsKw1HdrStjFJLzwpO4nqeXl9nDg7hqitV9LYwxxh8-M_vu1ufy9VCN3VYZajjaU5bEkzCZprwu1vpMGbAkbGqjeYBRRNSkMEMqDm5Prm8wFIzYfsxYIkT4zQj5rio_lmJvX7oL__yyRZhvHEnSrpFfggkzWIa5L_SCyzDjj3eqcgWecLrbnUNy3Ld27PbHgs6g53P_5EKWj3hpj6uh47TUZkTQjyWnGJ_WZZgjfMvZMy47xDfQdEeLPJrkvl_1SNe8kXNZoPHS5EY6quFyFe66nduj06DpsxCoSLAqkEnMuaWJzkxsWJhlmsokVIVWGGnrwoZcplRqydFdk45QTnKdsQTFoiy0WsdrMDUYDsw6EE21CamxTEjLUsmLDB2cOE1sZLQVhWgB_Zj4XDUk5K4XxlPugxEqcodV7rDKG6xasPc55KVm4PhLeNWB80WwxqUFWx_w5o2SlnlMBcb_jjNu45dhmzDrnl5vuWzBVDUam22YVq9Vvxzt-P_vHSzW2BA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BAZUe-GiL2FLAB05IaZ1k7MTcVrDLVmxXiC6it8jxh7qi7KJNFv4-YyetihBInJKDLUd-sWeex_MG4FXtyOtGo5PCoEnQIia1k7TcfUhjVFrKOoq4TovZrDw_Vx_7ZPWYC-Oci5fP3FF4jbF8uzKbcFRGK5zsKYr8NtwRiBnv0rWugwYo0j47WibEI7I-iJlydTx__-mMyGCGRzmiUCr9zQzFuip_bMbRwowf_ue3PYIHvSvJhh32j-GWW-7Czg2BwV24Fy94mmYPLmnCh6M37N3C-004IUtGy4sY_WenuvlKj-GmXQVVS-vWjDxZNiGG2iVirmmUk2-08bBYQjNcLop4si-L9oKN3U821TWZL8vOdBAbbvbh83g0fztJ-koLickUtokWuZSeC1u63GFalpZrkZraGuLatvap1AXXVkty2HSQlNPSliioWVam3tr8CWwtV0v3FJjl1qXceVTaY6FlXZKLkxfCZ856VasB8KuJr0wvQx6qYVxWkY5wVQWsqoBV1WM1gNfXXb53Ghz_arwfwLnRsMNlAIdX8Fb9Mm2qnKuSKAaRyoO_dHsJ25P56bSansw-PIP7YaTuAOYQttr1xj2Hu-ZHu2jWL-K_-AuRfdtX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DEMAE%3A+Diffusion-Enhanced+Masked+Autoencoder+for+Hyperspectral+Image+Classification+With+Few+Labeled+Samples&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Li%2C+Ziyu&rft.au=Xue%2C+Zhaohui&rft.au=Jia%2C+Mingming&rft.au=Nie%2C+Xiangyu&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTGRS.2024.3445991&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3445991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon