High-Dimensional Multi-Objective Bayesian Optimization With Block Coordinate Updates: Case Studies in Intelligent Transportation System
Many transportation system problems can be formulated as high-dimensional expensive multi-objective problems. They are challenging for Gaussian process-based Bayesian optimization methods to find the Pareto fronts due to the curse of dimensionality and the boundary issue in the acquisition function...
Saved in:
| Published in: | IEEE transactions on intelligent transportation systems Vol. 25; no. 1; pp. 1 - 12 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1524-9050, 1558-0016 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Many transportation system problems can be formulated as high-dimensional expensive multi-objective problems. They are challenging for Gaussian process-based Bayesian optimization methods to find the Pareto fronts due to the curse of dimensionality and the boundary issue in the acquisition function optimization. This paper presents a multi-objective Bayesian optimization method with block coordinate updates, Block-MOBO, to solve high-dimensional expensive multi-objective problems. Block-MOBO first partitions the decision variable space into different blocks, each of which includes a low-dimensional multi-objective problem. At each iteration, one block is considered and the decision variables not in this block are approximated by context-vector generation embedded with the Pareto prior knowledge thus promoting convergence. To tackle the boundary issue, we present <inline-formula> <tex-math notation="LaTeX">\epsilon</tex-math> </inline-formula>-greedy acquisition function in a Bayesian and multi-objective fashion, which recommends candidates either from the exploitation-exploration trade-off perspective or with probability <inline-formula> <tex-math notation="LaTeX">\epsilon</tex-math> </inline-formula> from the Pareto dominance relationship perspective. We verify the effectiveness of Block-MOBO by comparing it with other multi-objective Bayesian methods on two real-world optimization problems in transportation system and three multi-objective synthetic test suites. The experimental results show that Block-MOBO can find more evenly distributed and non-dominated solutions in the whole search space with lower complexity compared with other state-of-the-art approaches. Our analyses illustrate that block coordinate updates and <inline-formula> <tex-math notation="LaTeX">\epsilon</tex-math> </inline-formula>-greedy acquisition function contribute to computational complexity reduction and convergence-diversity trade-offs, respectively. |
|---|---|
| AbstractList | Many transportation system problems can be formulated as high-dimensional expensive multi-objective problems. They are challenging for Gaussian process-based Bayesian optimization methods to find the Pareto fronts due to the curse of dimensionality and the boundary issue in the acquisition function optimization. This paper presents a multi-objective Bayesian optimization method with block coordinate updates, Block-MOBO, to solve high-dimensional expensive multi-objective problems. Block-MOBO first partitions the decision variable space into different blocks, each of which includes a low-dimensional multi-objective problem. At each iteration, one block is considered and the decision variables not in this block are approximated by context-vector generation embedded with the Pareto prior knowledge thus promoting convergence. To tackle the boundary issue, we present [Formula Omitted]-greedy acquisition function in a Bayesian and multi-objective fashion, which recommends candidates either from the exploitation-exploration trade-off perspective or with probability [Formula Omitted] from the Pareto dominance relationship perspective. We verify the effectiveness of Block-MOBO by comparing it with other multi-objective Bayesian methods on two real-world optimization problems in transportation system and three multi-objective synthetic test suites. The experimental results show that Block-MOBO can find more evenly distributed and non-dominated solutions in the whole search space with lower complexity compared with other state-of-the-art approaches. Our analyses illustrate that block coordinate updates and [Formula Omitted]-greedy acquisition function contribute to computational complexity reduction and convergence-diversity trade-offs, respectively. Many transportation system problems can be formulated as high-dimensional expensive multi-objective problems. They are challenging for Gaussian process-based Bayesian optimization methods to find the Pareto fronts due to the curse of dimensionality and the boundary issue in the acquisition function optimization. This paper presents a multi-objective Bayesian optimization method with block coordinate updates, Block-MOBO, to solve high-dimensional expensive multi-objective problems. Block-MOBO first partitions the decision variable space into different blocks, each of which includes a low-dimensional multi-objective problem. At each iteration, one block is considered and the decision variables not in this block are approximated by context-vector generation embedded with the Pareto prior knowledge thus promoting convergence. To tackle the boundary issue, we present <inline-formula> <tex-math notation="LaTeX">\epsilon</tex-math> </inline-formula>-greedy acquisition function in a Bayesian and multi-objective fashion, which recommends candidates either from the exploitation-exploration trade-off perspective or with probability <inline-formula> <tex-math notation="LaTeX">\epsilon</tex-math> </inline-formula> from the Pareto dominance relationship perspective. We verify the effectiveness of Block-MOBO by comparing it with other multi-objective Bayesian methods on two real-world optimization problems in transportation system and three multi-objective synthetic test suites. The experimental results show that Block-MOBO can find more evenly distributed and non-dominated solutions in the whole search space with lower complexity compared with other state-of-the-art approaches. Our analyses illustrate that block coordinate updates and <inline-formula> <tex-math notation="LaTeX">\epsilon</tex-math> </inline-formula>-greedy acquisition function contribute to computational complexity reduction and convergence-diversity trade-offs, respectively. |
| Author | Zhang, Zeqiu Xu, Hua Wang, Hongyan |
| Author_xml | – sequence: 1 givenname: Hongyan orcidid: 0000-0002-5138-3158 surname: Wang fullname: Wang, Hongyan organization: Department of Computer Science and Technology, State Key Laboratory of Intelligent Technology and Systems, Tsinghua University, Beijing, China – sequence: 2 givenname: Hua orcidid: 0000-0002-7401-307X surname: Xu fullname: Xu, Hua organization: Department of Computer Science and Technology, State Key Laboratory of Intelligent Technology and Systems, Tsinghua University, Beijing, China – sequence: 3 givenname: Zeqiu surname: Zhang fullname: Zhang, Zeqiu organization: Department of Computer Science and Technology, State Key Laboratory of Intelligent Technology and Systems, Tsinghua University, Beijing, China |
| BookMark | eNp9UE1PGzEQtSoqFWh_QKUeLPW8wWPvl3sroUAkqhwS1OPKeGdhwsbe2g5S-gf422y0HBCHnt5o5r03eu-EHTnvkLGvIGYAQp-tF-vVTAqpZkrmIEr9gR1DUdSZEFAeHWaZZ1oU4hM7iXEzbvMC4Jg9X9P9Q3ZBW3SRvDM9_73rE2XLuw3aRE_Iz80eIxnHl0OiLf0zaeTxP5Qe-Hnv7SOfex9aciYhvx3aEeIPPjcR-SrtWsLIyfGFS9j3dI8u8XUwLg4-pMlptY8Jt5_Zx870Eb-84im7vfy1nl9nN8urxfznTWalzlNm5J0oarCm7pRpwXaFrctOo1YVqE622iiloS5yW5WdqFujpWlrKxR0UOVSqVP2ffIdgv-7w5iajd-FMXdspIaiUnlZ6ZEFE8sGH2PArhkCbU3YNyCaQ9_Noe_m0Hfz2veoqd5pLE0RUzDU_1f5bVISIr75JHIx3tULcGqR0g |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_1007_s10791_025_09531_3 crossref_primary_10_1109_TIA_2025_3541007 crossref_primary_10_1080_19475705_2024_2399924 crossref_primary_10_1111_mice_13293 crossref_primary_10_1016_j_swevo_2025_101998 crossref_primary_10_1109_TITS_2025_3559058 crossref_primary_10_1109_TSMC_2025_3571717 |
| Cites_doi | 10.1109/TEVC.2015.2455812 10.1162/evco.2007.15.1.1 10.1145/3377930.3389816 10.1007/978-3-540-87700-4_78 10.1109/MCI.2017.2742868 10.1109/CEC48606.2020.9185876 10.1145/3321707.3321784 10.1609/aaai.v34i06.6560 10.1137/0111043 10.1007/BF00939948 10.1287/mnsc.16.9.642 10.1109/TEVC.2005.861417 10.1109/TITS.2019.2903824 10.1109/TEVC.2007.892759 10.1109/TEVC.2015.2420112 10.1007/s00500-008-0394-9 10.1145/3425501 10.1609/aaai.v34i03.5623 10.1109/TEVC.2013.2281535 10.1109/TITS.2020.3048959 10.1109/TEVC.2018.2844286 10.1109/TITS.2022.3172420 10.1016/j.neucom.2019.06.025 10.1016/j.swevo.2018.10.007 10.1109/CEC48606.2020.9185674 10.1007/1-84628-137-7_6 10.1109/TITS.2018.2817879 10.1109/TEVC.2016.2622301 10.1109/4235.996017 10.1109/TITS.2020.2979390 10.1109/TITS.2022.3170000 10.1007/s10957-008-9458-3 10.1007/s10107-014-0800-2 10.1109/TEVC.2020.3044711 10.1023/A:1017501703105 10.24963/ijcai.2017/291 10.1109/TCYB.2018.2811761 10.1109/TITS.2020.3045758 10.1109/TITS.2021.3105415 10.1109/TITS.2019.2902927 10.1016/j.asoc.2020.106078 10.1109/TITS.2021.3108851 10.1109/TITS.2017.2769158 10.1109/TEVC.2005.851274 10.1007/978-3-030-58112-1_12 10.1109/TITS.2020.3010726 10.1016/j.ejor.2006.08.008 10.1023/A:1008306431147 10.24963/ijcai.2019/596 10.1109/TITS.2020.2964012 10.1109/TEVC.2015.2443001 10.1109/TEVC.2009.2014361 10.1109/TCYB.2021.3126341 10.1109/TEVC.2013.2281534 10.1007/978-3-319-18842-3 10.1109/CEC48606.2020.9185846 10.1109/TEVC.2011.2161872 10.1109/TEVC.2009.2033671 10.1609/aaai.v31i1.10664 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1109/TITS.2023.3241069 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TITS_2023_3241069 10040106 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61673235 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX AETIX AGSQL AIBXA CITATION EJD H~9 ZY4 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-a2b0581ca8f3ad1cf5c86f9e93713f2d9a3391854c76f08da92ad8c031f174233 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000935663800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Mon Jun 30 07:11:40 EDT 2025 Sat Nov 29 06:35:03 EST 2025 Tue Nov 18 22:35:39 EST 2025 Wed Aug 27 02:18:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-a2b0581ca8f3ad1cf5c86f9e93713f2d9a3391854c76f08da92ad8c031f174233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7401-307X 0000-0002-5138-3158 |
| PQID | 2915734679 |
| PQPubID | 75735 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2915734679 crossref_primary_10_1109_TITS_2023_3241069 crossref_citationtrail_10_1109_TITS_2023_3241069 ieee_primary_10040106 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 Zitzler (ref46) 1999 ref59 ref14 ref58 ref53 ref52 ref11 Djolonga (ref35); 1 ref55 ref10 ref54 Li (ref38); 51 ref17 ref16 ref19 Rolland (ref43); 84 Van Veldhuizen (ref73) 1999 ref51 Jones (ref18) 1998; 13 ref45 ref48 Wang (ref34) ref47 De Ath (ref62) ref42 Corne (ref79) Daulton (ref33) 2021 ref49 Press (ref50) 1988 ref8 ref7 Suzuki (ref29); 119 ref9 ref4 ref3 ref6 ref5 Letham (ref36) ref40 ref78 ref37 Belakaria (ref28) ref75 ref30 ref74 ref77 ref2 ref1 ref39 Daulton (ref25) Kandasamy (ref31); 37 Rana (ref44); 70 ref71 ref70 ref72 Zitzler (ref80) 2001 ref24 ref68 ref23 ref67 Wang (ref32); 70 ref69 ref20 ref64 ref63 ref22 Hernández-Lobato (ref26); 48 ref66 ref21 ref65 ref27 Demšar (ref76) 2006; 7 Kirschner (ref41); 97 ref60 ref61 |
| References_xml | – ident: ref59 doi: 10.1109/TEVC.2015.2455812 – ident: ref78 doi: 10.1162/evco.2007.15.1.1 – ident: ref61 doi: 10.1145/3377930.3389816 – ident: ref20 doi: 10.1007/978-3-540-87700-4_78 – ident: ref77 doi: 10.1109/MCI.2017.2742868 – start-page: 7823 volume-title: Proc. 32th Int. Conf. Neural Inf. Process. Syst. ident: ref28 article-title: Max-value entropy search for multi-objective Bayesian optimization – volume: 97 start-page: 3429 volume-title: Proc. 36th Int. Conf. Mach. Learn. ident: ref41 article-title: Adaptive and safe Bayesian optimization in high dimensions via one-dimensional subspaces – ident: ref15 doi: 10.1109/CEC48606.2020.9185876 – ident: ref23 doi: 10.1145/3321707.3321784 – ident: ref30 doi: 10.1609/aaai.v34i06.6560 – ident: ref56 doi: 10.1137/0111043 – ident: ref58 doi: 10.1007/BF00939948 – ident: ref57 doi: 10.1287/mnsc.16.9.642 – ident: ref70 doi: 10.1109/TEVC.2005.861417 – ident: ref4 doi: 10.1109/TITS.2019.2903824 – ident: ref51 doi: 10.1109/TEVC.2007.892759 – ident: ref63 doi: 10.1109/TEVC.2015.2420112 – year: 2021 ident: ref33 article-title: Multi-objective Bayesian optimization over high-dimensional search spaces publication-title: arXiv:2109.10964 – ident: ref74 doi: 10.1007/s00500-008-0394-9 – ident: ref60 doi: 10.1145/3425501 – ident: ref39 doi: 10.1609/aaai.v34i03.5623 – start-page: 1 volume-title: Proc. 33th Int. Conf. Neural Inf. Process. Syst. ident: ref25 article-title: Differentiable expected hypervolume improvement for parallel multi-objective Bayesian optimization – volume: 119 start-page: 9279 volume-title: Proc. 37th Int. Conf. Mach. Learn. ident: ref29 article-title: Multi-objective Bayesian optimization using Pareto-frontier entropy – volume: 84 start-page: 298 volume-title: Proc. 21st Int. Conf. Artif. Intell. Statist. ident: ref43 article-title: High-dimensional Bayesian optimization via additive models with overlapping groups – ident: ref52 doi: 10.1109/TEVC.2013.2281535 – ident: ref8 doi: 10.1109/TITS.2020.3048959 – volume: 51 start-page: 884 volume-title: Proc. 19th Int. Conf. Artif. Intell. Statist. ident: ref38 article-title: High dimensional Bayesian optimization via restricted projection pursuit models – ident: ref69 doi: 10.1109/TEVC.2018.2844286 – ident: ref13 doi: 10.1109/TITS.2022.3172420 – ident: ref27 doi: 10.1016/j.neucom.2019.06.025 – start-page: 1 volume-title: Evolutionary algorithms for multiobjective optimization: Methods and applications year: 1999 ident: ref46 – ident: ref24 doi: 10.1016/j.swevo.2018.10.007 – start-page: 283 volume-title: Proc. 3rd Annu. Conf. Genetic Evol. Comput. ident: ref79 article-title: PESA-II: Region-based selection in evolutionary multiobjective optimization – ident: ref14 doi: 10.1109/CEC48606.2020.9185674 – ident: ref68 doi: 10.1007/1-84628-137-7_6 – ident: ref12 doi: 10.1109/TITS.2018.2817879 – ident: ref22 doi: 10.1109/TEVC.2016.2622301 – ident: ref64 doi: 10.1109/4235.996017 – volume-title: Numerical Recipes in C: The Art of Scientific Computing year: 1988 ident: ref50 – ident: ref10 doi: 10.1109/TITS.2020.2979390 – ident: ref6 doi: 10.1109/TITS.2022.3170000 – ident: ref54 doi: 10.1007/s10957-008-9458-3 – ident: ref55 doi: 10.1007/s10107-014-0800-2 – volume: 7 start-page: 1 year: 2006 ident: ref76 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – ident: ref17 doi: 10.1109/TEVC.2020.3044711 – ident: ref53 doi: 10.1023/A:1017501703105 – ident: ref40 doi: 10.24963/ijcai.2017/291 – ident: ref48 doi: 10.1109/TCYB.2018.2811761 – ident: ref5 doi: 10.1109/TITS.2020.3045758 – ident: ref11 doi: 10.1109/TITS.2021.3105415 – ident: ref1 doi: 10.1109/TITS.2019.2902927 – start-page: 1778 volume-title: Proc. 23rd Int. Joint Conf. Artif. Intell. ident: ref34 article-title: Bayesian optimization in high dimensions via random embeddings – start-page: 1546 volume-title: Proc. 33th Int. Conf. Neural Inf. Process. Syst. ident: ref36 article-title: Re-examining linear embeddings for high-dimensional Bayesian optimization – start-page: 787 volume-title: Proc. Genetic Evol. Comput. Conf. ident: ref62 article-title: ϵ-shotgun: ϵ-greedy batch Bayesian optimisation – ident: ref71 doi: 10.1016/j.asoc.2020.106078 – ident: ref3 doi: 10.1109/TITS.2021.3108851 – ident: ref9 doi: 10.1109/TITS.2017.2769158 – year: 2001 ident: ref80 article-title: Spea2: Improving the strength Pareto evolutionary algorithm – ident: ref19 doi: 10.1109/TEVC.2005.851274 – ident: ref37 doi: 10.1007/978-3-030-58112-1_12 – ident: ref7 doi: 10.1109/TITS.2020.3010726 – volume: 48 start-page: 1492 volume-title: Proc. 33rd Int. Conf. Mach. Learn. ident: ref26 article-title: Predictive entropy search for multi-objective Bayesian optimization – volume: 37 start-page: 295 volume-title: Proc. 32nd Int. Conf. Mach. Learn. ident: ref31 article-title: High dimensional Bayesian optimisation and bandits via additive models – ident: ref65 doi: 10.1016/j.ejor.2006.08.008 – volume: 70 start-page: 2883 volume-title: Proc. 34th Int. Conf. Mach. Learn. ident: ref44 article-title: High dimensional Bayesian optimization with elastic Gaussian process – volume: 13 start-page: 455 issue: 4 year: 1998 ident: ref18 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Global Optim. doi: 10.1023/A:1008306431147 – ident: ref42 doi: 10.24963/ijcai.2019/596 – ident: ref2 doi: 10.1109/TITS.2020.2964012 – ident: ref49 doi: 10.1109/TEVC.2015.2443001 – ident: ref72 doi: 10.1109/TEVC.2009.2014361 – volume: 70 start-page: 3656 volume-title: Proc. 34th Int. Conf. Mach. Learn. ident: ref32 article-title: Batched high-dimensional Bayesian optimization via structural kernel learning – ident: ref66 doi: 10.1109/TCYB.2021.3126341 – ident: ref67 doi: 10.1109/TEVC.2013.2281534 – volume-title: Evolutionary Computation year: 1999 ident: ref73 article-title: Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations – ident: ref47 doi: 10.1007/978-3-319-18842-3 – ident: ref16 doi: 10.1109/CEC48606.2020.9185846 – ident: ref75 doi: 10.1109/TEVC.2011.2161872 – volume: 1 start-page: 1025 volume-title: Proc. 26th Int. Conf. Neural Inf. Process. Syst. ident: ref35 article-title: High-dimensional Gaussian process bandits – ident: ref21 doi: 10.1109/TEVC.2009.2033671 – ident: ref45 doi: 10.1609/aaai.v31i1.10664 |
| SSID | ssj0014511 |
| Score | 2.4862604 |
| Snippet | Many transportation system problems can be formulated as high-dimensional expensive multi-objective problems. They are challenging for Gaussian process-based... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> theta</tex-math> </inline-formula>-dominance rank Additives Bayes methods Bayesian analysis Complexity Computational modeling Convergence convergence-diversity trade-offs Dimensionality reduction Gaussian process Gaussian processes High-dimensional expensive multi-objective problems Intelligent transportation systems Iterative methods multi-objective Bayesian optimization Multiple objective analysis Optimization Tradeoffs Transportation |
| Title | High-Dimensional Multi-Objective Bayesian Optimization With Block Coordinate Updates: Case Studies in Intelligent Transportation System |
| URI | https://ieeexplore.ieee.org/document/10040106 https://www.proquest.com/docview/2915734679 |
| Volume | 25 |
| WOSCitedRecordID | wos000935663800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qHvTgW1xf5OBJyJq2aZt401VREBVc0VtJ88D10V3cKvgL_Ntmku6iiIK3HpJQ-Nr5ZjIz3yC0QzNb0twwwkqWEpZoTXhmoTLHGpVax7LWq-uf5xcX_O5OXDXN6r4Xxhjji89MGx59Ll_31Stcle2BuhnEMJNoMs-z0Kw1ThmA0JYXR40ZETQdpTAjKva6Z93rNswJbzv3we0X30jIT1X5YYo9v5zM__PNFtBc40jig4D8Ipow1RKa_SIvuIw-oIiDHIF-f9DewL7dllyWD8HM4UP5bqCLEl86y_HctGTi2159jw8dyz3iTt8Fp73KOaT4ZgCXA8N93HHEh5v6Q9yr8NlY1bPGY630cFLQQ19BNyfH3c4paQYvEBULVhMZlzTlkZLcJlJHyqYKADSgnZfYWAuZJMIRPVN5ZinXUsRSc-Xsg40g85usoqmqX5k1hLkLkLihqTTMsjIrJWfcWk2z2OiM2ayF6AiJQjWq5DAc46nw0QkVBYBXAHhFA14L7Y63DIIkx1-LVwCtLwsDUC20OcK7aP7aYRGLKM0TRx1i_ZdtG2jGnc7CHcwmmqpfXs0WmlZvdW_4su0_yE8DNN9M |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3xJUEPpS1UXQqtDz1V8uIkTtburWxBrLpdkFgEt8jxh9jSZhEbKvUX8LfrsbMrUFWk3nKwnUjPmefxzLwB-MAKV7Ge5ZRXPKc8M4aKwmFmjrM6d55lXVDXH_ZGI3F5KU_bYvVQC2OtDclntouPIZZvpvoOr8r2Ud0MfZhlWM05T1ks11oEDVBqK8ijppxKls-DmAmT--PB-KyLncK7_gDhV5CPaCj0VfnLGAeGOdr8z297Ac_boyT5HLF_CUu2fgXPHggMbsE9pnHQL6jgH9U3SCi4pSfV92joyIH6bbGOkpx42_GzLcokF5Pmihx4nrsm_al3Tye1P5KS8xu8Hph9In1PfaTNQCSTmgwWup4NWailx5WiIvo2nB8djvvHtG29QHUqeUNVWrFcJFoJlymTaJdrhNCiel7mUiNVlklP9Vz3CseEUTJVRmhvIVyCsd_sNazU09q-ASK8iyQsy5XljldFpQQXzhlWpNYU3BUdYHMkSt3qkmN7jB9l8E-YLBG8EsErW_A68HEx5SaKcjw1eBvRejAwAtWB3TneZfvfzspUJnkv8-Qhd_4x7T2sH4-_DcvhYPT1LWz4N_F4I7MLK83tnd2DNf2rmcxu34XN-QfE1OKT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Dimensional+Multi-Objective+Bayesian+Optimization+With+Block+Coordinate+Updates%3A+Case+Studies+in+Intelligent+Transportation+System&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Wang%2C+Hongyan&rft.au=Xu%2C+Hua&rft.au=Zhang%2C+Zeqiu&rft.date=2024-01-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=25&rft.issue=1&rft.spage=884&rft.epage=895&rft_id=info:doi/10.1109%2FTITS.2023.3241069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2023_3241069 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |