Multiscale Memory Autoencoder and Spatial Filtering for Hyperspectral Anomaly Detection

The hyperspectral anomaly detection (HAD) aims to identify potential anomalies from complex backgrounds. Most reconstruction-based autoencoders equally treat background pixels and anomalies or ignore potential spatial information. In this letter, we propose an HAD method based on multiscale memory a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters Vol. 22; pp. 1 - 5
Main Authors: Ma, Ziyang, Zhang, Yongshan, Lian, Yuyun, Jiang, Xinwei, Liu, Xiaobo, Cai, Zhihua
Format: Journal Article
Language:English
Published: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1545-598X, 1558-0571
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hyperspectral anomaly detection (HAD) aims to identify potential anomalies from complex backgrounds. Most reconstruction-based autoencoders equally treat background pixels and anomalies or ignore potential spatial information. In this letter, we propose an HAD method based on multiscale memory autoencoder and spatial filtering, abbreviated as SFM2AE. Specifically, by introducing memory modules into different hidden layers of the autoencoder, multiscale reconstruction of background and anomaly pixels is achieved in the spectral domain. In addition, morphological filtering in the spatial domain is used to extract spatial structural information from anomalies. Joint spatial-spectral anomaly detection is achieved by combining multiscale memory autoencoder and spatial filtering. Experiments demonstrate superior detection performance of the proposed method over the state-of-the-art methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2025.3528498