Neural-Network-Based Secure State Estimation Under Energy-Constrained Denial-of-Service Attacks: An Encoding-Decoding Scheme

This paper is concerned with the secure state estimation issue for a class of networked nonlinear systems under energy-constrained denial-of-service (EC-DoS) cyber-attacks and encoding-decoding scheme (EDS). The information transmissions between sensors and the estimator are executed via a bandwidth...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on network science and engineering Ročník 10; číslo 4; s. 1 - 14
Hlavní autoři: Zhang, Yuhan, Wang, Zidong, Zou, Lei, Dong, Hongli, Yi, Xiaojian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2327-4697, 2334-329X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper is concerned with the secure state estimation issue for a class of networked nonlinear systems under energy-constrained denial-of-service (EC-DoS) cyber-attacks and encoding-decoding scheme (EDS). The information transmissions between sensors and the estimator are executed via a bandwidth-limited communication network, on which the EDS is deployed to convert transmitted signals into finite-length codewords for the purpose of improving transmission efficiency. The EC-DoS attacks, whose intention is to jeopardize the network-based signal transmissions by overloading the communication resource, are assumed to occur in an intermittent way with bounded occurrence frequency/durations owing to the inherent energy constraints on the attackers. Considering the worst case of such EC-DoS attacks, a neural-network (NN)-based state estimator is constructed to generate the desired state estimates for the underlying networked nonlinear system. By employing the Lyapunov stability theory, the estimation error dynamics of the system state and the neural-network weight are jointly analyzed within a unified framework. Subsequently, sufficient conditions are obtained for the existence of the desired NN-based state estimator, and then both the desired estimator gain matrix and the NN tuning parameters are characterized. Finally, the validity of our estimation approach is confirmed by an example.
AbstractList This paper is concerned with the secure state estimation issue for a class of networked nonlinear systems under energy-constrained denial-of-service (EC-DoS) cyber-attacks and encoding-decoding scheme (EDS). The information transmissions between sensors and the estimator are executed via a bandwidth-limited communication network, on which the EDS is deployed to convert transmitted signals into finite-length codewords for the purpose of improving transmission efficiency. The EC-DoS attacks, whose intention is to jeopardize the network-based signal transmissions by overloading the communication resource, are assumed to occur in an intermittent way with bounded occurrence frequency/durations owing to the inherent energy constraints on the attackers. Considering the worst case of such EC-DoS attacks, a neural-network (NN)-based state estimator is constructed to generate the desired state estimates for the underlying networked nonlinear system. By employing the Lyapunov stability theory, the estimation error dynamics of the system state and the neural-network weight are jointly analyzed within a unified framework. Subsequently, sufficient conditions are obtained for the existence of the desired NN-based state estimator, and then both the desired estimator gain matrix and the NN tuning parameters are characterized. Finally, the validity of our estimation approach is confirmed by an example.
Author Yi, Xiaojian
Zhang, Yuhan
Zou, Lei
Dong, Hongli
Wang, Zidong
Author_xml – sequence: 1
  givenname: Yuhan
  surname: Zhang
  fullname: Zhang, Yuhan
  organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China
– sequence: 2
  givenname: Zidong
  orcidid: 0000-0002-9576-7401
  surname: Wang
  fullname: Wang, Zidong
  organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China
– sequence: 3
  givenname: Lei
  orcidid: 0000-0002-0409-7941
  surname: Zou
  fullname: Zou, Lei
  organization: College of Information Science and Technology, Donghua University, Shanghai, China
– sequence: 4
  givenname: Hongli
  orcidid: 0000-0001-8531-6757
  surname: Dong
  fullname: Dong, Hongli
  organization: Artificial Intelligence Energy Research Institute, Northeast Petroleum University, Daqing, China
– sequence: 5
  givenname: Xiaojian
  orcidid: 0000-0002-9214-257X
  surname: Yi
  fullname: Yi, Xiaojian
  organization: School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
BookMark eNp9kE1LAzEQhoMoqLU_QPCw4Dk1yXQ_4q229QOkHraCtyVNZutqTTRJlYI_3l3rQTx4mmF4nxnmOSS71lkk5JizAedMns1n5XQgmIABCMgzkDvkQAAMKQj5sNv1IqfDTOb7pB_CE2OMiyIDgAPyOcO1Vys6w_jh_DO9UAFNUqJee0zKqCIm0xCbFxUbZ5N7a9AnU4t-uaFjZ0P0qrEtMEHbtFtcTUv0743GZBSj0s_hPBnZFtDONHZJJ7htklI_4gsekb1arQL2f2qP3F9O5-Nrent3dTMe3VIt5DBSKaVJDZcpFkYtoEYw3SgXjAMoNEblWabRSBSc56kesrpQtVwowCxDWUCPnG73vnr3tsYQqye39rY9WYlCFBJkLtM2lW9T2rsQPNaVbuL3392Xq4qzqrNddbarznb1Y7sl-R_y1bfK_OZf5mTLNIj4K894kbIUvgD2OY4u
CODEN ITNSD5
CitedBy_id crossref_primary_10_1109_TNSE_2025_3529888
crossref_primary_10_1109_TSMC_2025_3571783
crossref_primary_10_1016_j_automatica_2025_112159
crossref_primary_10_1016_j_ejcon_2024_101037
crossref_primary_10_1016_j_inffus_2024_102259
crossref_primary_10_1109_TAI_2024_3445892
crossref_primary_10_1109_TASE_2025_3536076
crossref_primary_10_1109_TNSE_2025_3558763
crossref_primary_10_1109_TASE_2025_3577992
crossref_primary_10_1016_j_neucom_2024_128713
crossref_primary_10_1016_j_neucom_2024_127586
crossref_primary_10_1002_rnc_7093
crossref_primary_10_1109_TNSE_2025_3565302
crossref_primary_10_1016_j_neucom_2025_130908
crossref_primary_10_1016_j_jfranklin_2024_106793
crossref_primary_10_1109_JAS_2024_124815
crossref_primary_10_1109_TNSE_2025_3568698
crossref_primary_10_1109_TNNLS_2024_3389873
crossref_primary_10_1109_TNSE_2024_3419801
crossref_primary_10_1109_TSMC_2024_3516134
crossref_primary_10_1016_j_neunet_2025_107710
crossref_primary_10_1109_TSMC_2024_3497590
crossref_primary_10_1002_rnc_7297
crossref_primary_10_1109_TSIPN_2024_3356789
Cites_doi 10.1016/j.automatica.2021.109684
10.1109/TAC.2016.2612818
10.1016/j.sysconle.2014.05.001
10.1109/TSP.2012.2236325
10.1109/TSP.2015.2420536
10.1080/00207721.2022.2049919
10.1109/TKDE.2020.3033324
10.1109/TSMC.2020.2964586
10.1080/00207721.2020.1868615
10.1109/TAC.2008.923691
10.53941/ijndi0101003
10.1080/21642583.2020.1833789
10.1109/TCNS.2016.2613445
10.1016/0893-6080(89)90020-8
10.1109/TPAMI.2021.3132503
10.1002/rnc.4535
10.1109/TAC.2019.2953210
10.1109/JAS.2020.1003297
10.1109/TNNLS.2016.2516030
10.1007/BF02551274
10.53941/ijndi0101009
10.53941/ijndi0101010
10.1016/j.neucom.2020.04.046
10.1109/MIC.2006.5
10.1080/03081079.2014.973728
10.1109/TAC.2013.2279896
10.1016/j.automatica.2017.01.031
10.53941/ijndi0101002
10.1109/TNN.2011.2116803
10.1080/00207721.2021.1998721
10.1109/TNNLS.2021.3102127
10.1080/00207721.2021.1885082
10.1109/TCYB.2019.2920093
10.1109/LCSYS.2019.2920507
10.1109/TCYB.2020.3004187
10.1109/TSP.2017.2686375
10.1080/00207721.2021.2005178
10.1109/TAC.2020.2996579
10.1080/00207721.2021.1995528
10.1109/TAC.2015.2416924
10.1016/j.automatica.2014.10.067
10.1109/TCNS.2020.3035760
10.53941/ijndi0101004
10.1109/TII.2019.2893845
10.1109/TII.2016.2542208
10.1016/j.automatica.2020.109116
10.53941/ijndi0101008
10.1016/j.neucom.2022.06.047
10.1109/TCYB.2021.3100303
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2023.3237639
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 14
ExternalDocumentID 10_1109_TNSE_2023_3237639
10018505
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62273087; 61933007; 62233012; U21A2019; 52272430
– fundername: Shanghai Pujiang Program of China
  grantid: 22PJ1400400
– fundername: European Union's Horizon 2020 Research and Innovation Programme
  grantid: 820776
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-999d5d195e8dab3fe3d999d720133aedda766ced9e21175c40f8af9ba3e66e983
IEDL.DBID RIE
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001018711800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4697
IngestDate Mon Jun 30 09:39:26 EDT 2025
Sat Nov 29 04:55:54 EST 2025
Tue Nov 18 21:58:06 EST 2025
Wed Aug 27 02:21:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-999d5d195e8dab3fe3d999d720133aedda766ced9e21175c40f8af9ba3e66e983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8531-6757
0000-0002-9214-257X
0000-0002-9576-7401
0000-0002-0409-7941
PQID 2828939795
PQPubID 2040409
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TNSE_2023_3237639
crossref_primary_10_1109_TNSE_2023_3237639
proquest_journals_2828939795
ieee_primary_10018505
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
luo (ref45) 2023; 35
References_xml – ident: ref19
  doi: 10.1016/j.automatica.2021.109684
– ident: ref4
  doi: 10.1109/TAC.2016.2612818
– ident: ref33
  doi: 10.1016/j.sysconle.2014.05.001
– ident: ref34
  doi: 10.1109/TSP.2012.2236325
– ident: ref17
  doi: 10.1109/TSP.2015.2420536
– ident: ref35
  doi: 10.1080/00207721.2022.2049919
– ident: ref46
  doi: 10.1109/TKDE.2020.3033324
– ident: ref43
  doi: 10.1109/TSMC.2020.2964586
– ident: ref22
  doi: 10.1080/00207721.2020.1868615
– ident: ref30
  doi: 10.1109/TAC.2008.923691
– ident: ref29
  doi: 10.53941/ijndi0101003
– ident: ref38
  doi: 10.1080/21642583.2020.1833789
– ident: ref8
  doi: 10.1109/TCNS.2016.2613445
– ident: ref14
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref23
  doi: 10.1109/TPAMI.2021.3132503
– ident: ref21
  doi: 10.1002/rnc.4535
– ident: ref50
  doi: 10.1109/TAC.2019.2953210
– ident: ref12
  doi: 10.1109/JAS.2020.1003297
– ident: ref27
  doi: 10.1109/TNNLS.2016.2516030
– ident: ref6
  doi: 10.1007/BF02551274
– ident: ref36
  doi: 10.53941/ijndi0101009
– ident: ref44
  doi: 10.53941/ijndi0101010
– ident: ref32
  doi: 10.1016/j.neucom.2020.04.046
– ident: ref3
  doi: 10.1109/MIC.2006.5
– ident: ref2
  doi: 10.1080/03081079.2014.973728
– ident: ref49
  doi: 10.1109/TAC.2013.2279896
– ident: ref9
  doi: 10.1016/j.automatica.2017.01.031
– ident: ref41
  doi: 10.53941/ijndi0101002
– ident: ref1
  doi: 10.1109/TNN.2011.2116803
– ident: ref24
  doi: 10.1080/00207721.2021.1998721
– ident: ref48
  doi: 10.1109/TNNLS.2021.3102127
– ident: ref16
  doi: 10.1080/00207721.2021.1885082
– ident: ref13
  doi: 10.1109/TCYB.2019.2920093
– ident: ref10
  doi: 10.1109/LCSYS.2019.2920507
– ident: ref28
  doi: 10.1109/TCYB.2020.3004187
– ident: ref5
  doi: 10.1109/TSP.2017.2686375
– ident: ref11
  doi: 10.1080/00207721.2021.2005178
– ident: ref20
  doi: 10.1109/TAC.2020.2996579
– ident: ref15
  doi: 10.1080/00207721.2021.1995528
– volume: 35
  start-page: 6148
  year: 2023
  ident: ref45
  article-title: NeuLFT: A novel approach to nonlinear canonical polyadic decomposition on high-dimensional incomplete tensors
  publication-title: IEEE Trans Knowl Data Eng
– ident: ref7
  doi: 10.1109/TAC.2015.2416924
– ident: ref31
  doi: 10.1016/j.automatica.2014.10.067
– ident: ref47
  doi: 10.1109/TCNS.2020.3035760
– ident: ref26
  doi: 10.53941/ijndi0101004
– ident: ref25
  doi: 10.1109/TII.2019.2893845
– ident: ref42
  doi: 10.1109/TII.2016.2542208
– ident: ref40
  doi: 10.1016/j.automatica.2020.109116
– ident: ref37
  doi: 10.53941/ijndi0101008
– ident: ref18
  doi: 10.1016/j.neucom.2022.06.047
– ident: ref39
  doi: 10.1109/TCYB.2021.3100303
SSID ssj0001286333
Score 2.388855
Snippet This paper is concerned with the secure state estimation issue for a class of networked nonlinear systems under energy-constrained denial-of-service (EC-DoS)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Constraints
Cybersecurity
Denial of service attacks
Denial-of-service attack
Dynamic stability
Encoding
Encoding-Decoding
encoding-decoding scheme
Estimation
Networked nonlinear systems
Neural networks
Nonlinear systems
Sensors
State estimation
Transmission efficiency
Title Neural-Network-Based Secure State Estimation Under Energy-Constrained Denial-of-Service Attacks: An Encoding-Decoding Scheme
URI https://ieeexplore.ieee.org/document/10018505
https://www.proquest.com/docview/2828939795
Volume 10
WOSCitedRecordID wos001018711800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2334-329X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286333
  issn: 2327-4697
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBz4nTKTl4ErJ1S9s03qbr8CBF2JTdSpq8gjA72TpP_vHmpZ0MRMFbKHml7a_Je3kfv0fItZYCRJBpppUP9oBiJFPGN0xlJs883-S5I_V5eRRJEk2n8qkuVne1MADgks-gg0MXyzdzvUJXWRf5gqIAGUu3hQirYq0Nh0oUcs7ryGXPk91JMo472B68wzH3A_uBb-ge10zlxw7s1Mro4J8PdEj2a_uRDirAj8gWFMdkb4NV8IR8IuGGmrGkyvBmd1ZRGeoc60CdcUlju7CrmkXqGh_R2JUAMmzf6ZpGWIEhpuHN2Dxn9X5CB2WJFfm3dFBYAT1HtceGUA3o2ML_Bk3yPIon9w-sbrLAdF_6JbMGoglMTwYQGZXxHLjBS8IaBpwrMEaJMNRgJPSR1VP7Xh6pXGaKQxiCjPgpaRTzAs4IDfoBxlnBgLFGVpRFfV9Y88duoBCKXPEW8dafP9U1Azm-0yx1JxFPpohYioilNWItcvMt8l7Rb_w1uYkQbUys0GmR9hrktF6hy9QdNTGoGZz_InZBdvHuVW5umzTKxQouyY7-KF-Xiyv3830Bdmbamw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yBfXBb3E6NQ8-Cdm6pl_xbbqNibMIm7K3kiZXEOYmW-eTf7y5tJOBKPgWSo62uSR3yd39foRcKRFC6KeKKemBOaBowaT2NJOpzlLH01lmQX1e-mEcR6OReCqL1W0tDADY5DOoY9PG8vVULfCqrIF4QZGPiKXrvue5TlGutXKlEgWc8zJ22XREYxgPOnUkCK9zzP5ARvAV62PpVH7swdawdHf_-Ul7ZKf0IGmrUPk-WYPJAdlewRU8JJ8IuSHHLC5yvNmtMVWa2qt1oNa9pB2ztIuqRWqpj2jHFgEyJPC0tBFGoI2JeGM2zVi5o9BWnmNN_g1tTYyAmqLhY20oGnRgJsAbHJHnbmd412MlzQJTrvByZlxE7eum8CHSMuUZcI2PQuMacC5BaxkGgQItwEVcT-U5WSQzkUoOQQAi4sekMplO4IRQ3_Ux0goatHGzojRyvdA4QGYLhSDMJK8SZzn8iSoxyPGfxok9izgiQY0lqLGk1FiVXH-LvBcAHH91PkIVrXQstFMltaWSk3KNzhN72MSwpn_6i9gl2ewNH_tJ_z5-OCNb-KYiU7dGKvlsAedkQ33kr_PZhZ2IX_rM3eI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-Network-Based+Secure+State+Estimation+Under+Energy-Constrained+Denial-of-Service+Attacks%3A+An+Encoding-Decoding+Scheme&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Zhang%2C+Yuhan&rft.au=Wang%2C+Zidong&rft.au=Zou%2C+Lei&rft.au=Dong%2C+Hongli&rft.date=2023-07-01&rft.issn=2327-4697&rft.eissn=2334-329X&rft.volume=10&rft.issue=4&rft.spage=2002&rft.epage=2015&rft_id=info:doi/10.1109%2FTNSE.2023.3237639&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSE_2023_3237639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon