Obstacle Avoidance Learning for Robot Motion Planning in Human-Robot Integration Environments

In the human-robot integration environment, it is essential for mobile robots to pass through the crowd and complete the navigation task smoothly. However, the current mainstream robot navigation algorithms only treat pedestrians as dynamic obstacles and passively avoid pedestrians in local planning...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cognitive and developmental systems Ročník 15; číslo 4; s. 1
Hlavní autori: Hong, Yang, Ding, Zhiyu, Yuan, Yuan, Chi, Wenzheng, Sun, Lining
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2379-8920, 2379-8939
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the human-robot integration environment, it is essential for mobile robots to pass through the crowd and complete the navigation task smoothly. However, the current mainstream robot navigation algorithms only treat pedestrians as dynamic obstacles and passively avoid pedestrians in local planning. When encountering fast-moving pedestrians, local path planning often fails, causing the robot to stagnate, spin or shake in place, which in turn reduces the navigation efficiency and results in unnatural navigation trajectories. To address this problem, it is desirable for the robot to find a safe and convenient temporary target to avoid the collision with fast-moving pedestrians. In this paper, we propose an obstacle avoidance learning method with the temporary target for the robot motion planning in the human-robot integration environment. The temporary target distribution is learned from imitations by using a Conditional Variational Autoencoder (CVAE) framework, whereby the dynamic scenario information including pedestrian information, the environmental information, and the robot information are considered as the generation conditions. With the proposed method, the mobile robot first navigates to the temporary target area, and then plans the path toward the final target point. Experimental studies reveal that the proposed method can achieve satisfactory performance with respect to different scenario conditions.
AbstractList In the human-robot integration environment, it is essential for mobile robots to pass through the crowd and complete the navigation task smoothly. However, the current mainstream robot navigation algorithms only treat pedestrians as dynamic obstacles and passively avoid pedestrians in local planning. When encountering fast-moving pedestrians, local path planning often fails, causing the robot to stagnate, spin or shake in place, which in turn reduces the navigation efficiency and results in unnatural navigation trajectories. To address this problem, it is desirable for the robot to find a safe and convenient temporary target to avoid the collision with fast-moving pedestrians. In this paper, we propose an obstacle avoidance learning method with the temporary target for the robot motion planning in the human-robot integration environment. The temporary target distribution is learned from imitations by using a Conditional Variational Autoencoder (CVAE) framework, whereby the dynamic scenario information including pedestrian information, the environmental information, and the robot information are considered as the generation conditions. With the proposed method, the mobile robot first navigates to the temporary target area, and then plans the path toward the final target point. Experimental studies reveal that the proposed method can achieve satisfactory performance with respect to different scenario conditions.
In the human–robot integration environment, it is essential for mobile robots to pass through the crowd and complete the navigation task smoothly. However, the current mainstream robot navigation algorithms only treat pedestrians as dynamic obstacles and passively avoid pedestrians in local planning. When encountering fast-moving pedestrians, local path planning often fails, causing the robot to stagnate, spin or shake in place, which in turn reduces the navigation efficiency and results in unnatural navigation trajectories. To address this problem, it is desirable for the robot to find a safe and convenient temporary target to avoid the collision with fast-moving pedestrians. In this article, we propose an obstacle avoidance learning method with the temporary target for the robot motion planning in the human–robot integration environment. The temporary target distribution is learned from imitations by using a conditional variational autoencoder (CVAE) framework, whereby the dynamic scenario information, including pedestrian information, the environmental information, and the robot information, is considered as the generation conditions. With the proposed method, the mobile robot first navigates to the temporary target area, and then plans the path toward the final target point. Experimental studies reveal that the proposed method can achieve satisfactory performance with respect to different scenario conditions.
Author Chi, Wenzheng
Sun, Lining
Hong, Yang
Yuan, Yuan
Ding, Zhiyu
Author_xml – sequence: 1
  givenname: Yang
  surname: Hong
  fullname: Hong, Yang
  organization: School of Mechanical and Electric Engineering, Robotics and Microsystems Center, Soochow University, Suzhou, China
– sequence: 2
  givenname: Zhiyu
  surname: Ding
  fullname: Ding, Zhiyu
  organization: School of Mechanical and Electric Engineering, Robotics and Microsystems Center, Soochow University, Suzhou, China
– sequence: 3
  givenname: Yuan
  surname: Yuan
  fullname: Yuan, Yuan
  organization: School of Mechanical and Electric Engineering, Robotics and Microsystems Center, Soochow University, Suzhou, China
– sequence: 4
  givenname: Wenzheng
  orcidid: 0000-0002-8121-2624
  surname: Chi
  fullname: Chi, Wenzheng
  organization: School of Mechanical and Electric Engineering, Robotics and Microsystems Center, Soochow University, Suzhou, China
– sequence: 5
  givenname: Lining
  surname: Sun
  fullname: Sun, Lining
  organization: School of Mechanical and Electric Engineering, Robotics and Microsystems Center, Soochow University, Suzhou, China
BookMark eNp9kM1KAzEUhYMoWGsfQHAx4Hpq_phMlqVWW6hUtC4lZJJMSZkmNUkLvr3TThFx4epcON-593KuwLnzzgBwg-AQIcjvl-OHtyGGmAwJppgwcgZ6rfC85ISf_8wYXoJBjGsIISoIKynrgY9FFZNUjclGe2-1dMpkcyODs26V1T5kr77yKXv2yXqXvTTSHR3rsuluI13e2TOXzCrIIzNxexu82xiX4jW4qGUTzeCkffD-OFmOp_l88TQbj-a5wpymvDQcaVQbzrSCqOIMl7RUWEsMIdea14xSommlClgoxiiDda0VR5yXVLKKkz646_Zug__cmZjE2u-Ca08KzCFGqCg5ainWUSr4GIOphbLp-HQK0jYCQXGoUxzqFIc6xanONon-JLfBbmT4-jdz22WsMeYXDwnDkJFvsR2CeQ
CODEN ITCDA4
CitedBy_id crossref_primary_10_1016_j_rcim_2025_103112
crossref_primary_10_1109_ACCESS_2025_3552225
crossref_primary_10_1109_TASE_2024_3519012
crossref_primary_10_1007_s10846_024_02117_z
crossref_primary_10_1109_JSEN_2025_3530007
crossref_primary_10_1109_TCDS_2024_3387575
crossref_primary_10_1109_ACCESS_2024_3514706
crossref_primary_10_3390_s25020350
Cites_doi 10.1109/CVPR.2018.00240
10.1109/LRA.2018.2856915
10.1109/TRO.2011.2120810
10.1109/ACCESS.2019.2928556
10.1109/ICRA.2018.8461113
10.1109/TIE.2021.3078390
10.1109/ICRA48506.2021.9561456
10.1109/TASE.2017.2731371
10.1109/TASE.2018.2877963
10.1109/ICCV.2009.5459260
10.1016/j.trb.2005.09.006
10.1109/IROS.2017.8206184
10.1109/TITS.2020.3006767
10.1109/robot.2008.4543489
10.1109/ICRA.2018.8460730
10.1109/CVPR.2016.110
10.1609/aaai.v25i1.7993
10.1109/ICRA.2018.8460968
10.1109/IROS.2014.6942731
10.1109/ICRA.2013.6630866
10.1109/ROBIO49542.2019.8961764
10.1109/LRA.2019.2901898
10.1109/IROS40897.2019.8968503
10.1109/JSEN.2021.3054888
10.1109/ICRA.2017.7989037
10.3934/math.2022585
10.1109/TCYB.2021.3121080
10.1103/PhysRevE.51.4282
10.1109/wcica.2008.4592807
10.1109/ICRA.2019.8794134
10.1109/IROS.2017.8202312
10.1109/TITS.2021.3074914
10.1109/TIE.2022.3146553
10.1109/IROS.2018.8593772
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCDS.2023.3242373
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2379-8939
EndPage 1
ExternalDocumentID 10_1109_TCDS_2023_3242373
10037207
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China; National Key R&D Program of China
  grantid: 2020YFB1313601
  funderid: 10.13039/501100012166
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M681691
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 61903267
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-8e91d1fe97dc01b972848c2da2009dd9f7443d4bc606c77470ffdc919984a7b93
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001126639000039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2379-8920
IngestDate Mon Jun 30 10:15:32 EDT 2025
Sat Nov 29 02:22:11 EST 2025
Tue Nov 18 22:27:43 EST 2025
Wed Aug 27 02:18:24 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-8e91d1fe97dc01b972848c2da2009dd9f7443d4bc606c77470ffdc919984a7b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8121-2624
PQID 2902116891
PQPubID 85513
PageCount 1
ParticipantIDs ieee_primary_10037207
proquest_journals_2902116891
crossref_citationtrail_10_1109_TCDS_2023_3242373
crossref_primary_10_1109_TCDS_2023_3242373
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive and developmental systems
PublicationTitleAbbrev TCDS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Fulgenzi (ref37) 2010
Antonini (ref9)
Hall (ref38) 1963
Doersch (ref29) 2016
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref4
ref3
ref6
ref5
References_xml – ident: ref20
  doi: 10.1109/CVPR.2018.00240
– ident: ref30
  doi: 10.1109/LRA.2018.2856915
– year: 2010
  ident: ref37
  article-title: Risk based motion planning and navigation in uncertain dynamic environment
– ident: ref4
  doi: 10.1109/TRO.2011.2120810
– ident: ref14
  doi: 10.1109/ACCESS.2019.2928556
– ident: ref24
  doi: 10.1109/ICRA.2018.8461113
– ident: ref7
  doi: 10.1109/TIE.2021.3078390
– ident: ref34
  doi: 10.1109/ICRA48506.2021.9561456
– year: 2016
  ident: ref29
  article-title: Tutorial on variational autoencoders
  publication-title: arXiv:1606.05908
– ident: ref15
  doi: 10.1109/TASE.2017.2731371
– ident: ref5
  doi: 10.1109/TASE.2018.2877963
– ident: ref8
  doi: 10.1109/ICCV.2009.5459260
– ident: ref10
  doi: 10.1016/j.trb.2005.09.006
– ident: ref2
  doi: 10.1109/IROS.2017.8206184
– ident: ref13
  doi: 10.1109/TITS.2020.3006767
– volume-title: Proxemics: The Study of Man’s Spatial Relations
  year: 1963
  ident: ref38
– ident: ref3
  doi: 10.1109/robot.2008.4543489
– ident: ref35
  doi: 10.1109/ICRA.2018.8460730
– ident: ref19
  doi: 10.1109/CVPR.2016.110
– ident: ref28
  doi: 10.1609/aaai.v25i1.7993
– ident: ref21
  doi: 10.1109/ICRA.2018.8460968
– ident: ref26
  doi: 10.1109/IROS.2014.6942731
– ident: ref36
  doi: 10.1109/ICRA.2013.6630866
– start-page: 273
  volume-title: Proc. Adv. Concepts Intell. Vis. Syst.
  ident: ref9
  article-title: A discrete choice pedestrian behavior model for pedestrian detection in visual tracking systems
– ident: ref27
  doi: 10.1109/ROBIO49542.2019.8961764
– ident: ref31
  doi: 10.1109/LRA.2019.2901898
– ident: ref33
  doi: 10.1109/IROS40897.2019.8968503
– ident: ref6
  doi: 10.1109/JSEN.2021.3054888
– ident: ref22
  doi: 10.1109/ICRA.2017.7989037
– ident: ref18
  doi: 10.3934/math.2022585
– ident: ref17
  doi: 10.1109/TCYB.2021.3121080
– ident: ref11
  doi: 10.1103/PhysRevE.51.4282
– ident: ref1
  doi: 10.1109/wcica.2008.4592807
– ident: ref25
  doi: 10.1109/ICRA.2019.8794134
– ident: ref23
  doi: 10.1109/IROS.2017.8202312
– ident: ref12
  doi: 10.1109/TITS.2021.3074914
– ident: ref16
  doi: 10.1109/TIE.2022.3146553
– ident: ref32
  doi: 10.1109/IROS.2018.8593772
SSID ssj0001637847
Score 2.399502
Snippet In the human-robot integration environment, it is essential for mobile robots to pass through the crowd and complete the navigation task smoothly. However, the...
In the human–robot integration environment, it is essential for mobile robots to pass through the crowd and complete the navigation task smoothly. However, the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Collision avoidance
Conditional Variational Autoencoder
Dynamic Obstacle Avoidance
Human motion
Human-Robot Integration Environment
Learning
Motion planning
Navigation
Obstacle avoidance
Path planning
Pedestrians
Planning
Predictive models
Robot dynamics
Robot motion
Robots
Trajectory
Title Obstacle Avoidance Learning for Robot Motion Planning in Human-Robot Integration Environments
URI https://ieeexplore.ieee.org/document/10037207
https://www.proquest.com/docview/2902116891
Volume 15
WOSCitedRecordID wos001126639000039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2379-8939
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001637847
  issn: 2379-8920
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA5uePDi1yZOp-QgHoTMtumW5DjmhoJO0Qm7SEnzIQNtZesG_nuTNNOJKHgr9E0pfZrkyfv1AHDCOzw0S14bYUoliqnGiJNA2DauWDKOdUxdofA1GQ7peMzufLG6q4VRSrnkM9Wyly6WL3Mxt64yM8MDK6pCKqBCCCmLtb4cKh1MqBMUizBhiLJoGcUMA3Y-6l08tKxUeMsxCIK_7UNOWOXHauy2mMHWP19uG2x6Lgm7Jfg7YE1lu6DWzcw5-vUdnkKX3enc5jXwdJsaHmjMYHeRT6TFGvreqs_QEFd4n6d5AW-cqA9cShnBSQadmx-Vt698cwlr018pkauDx0F_1LtEXloBiYjFBaKKhTLUihEpgjBlxOxSVESS22CJlEyTOMYyToU53wjDEEmgtRTMFuTFnKQM74FqlmdqH8AAGxKmtQHcsJF2SrmN7QmdEm7YjpS0AYLlh06E7ztu5S9eEnf-CFhisUksNonHpgHOPoe8lU03_jKuWzBWDEscGqC5hDPx83KWRMxwmrBDWXjwy7BDsGGfXmasNEG1mM7VEVgXi2Iymx67X-4Dc9nSFA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGP3QKeiL14nzmgfxQehsm2xJHoduKM4pOsEXKW0uMtBWZh34703SViei4FuhX2jpaZKT73YADuJ2HJglr-VhxqRHmMZeTH1h27hiyWOsCXOFwn06GLD7e35dFqu7WhillEs-U0176WL5MhNv1lVmZrhvRVXoLMy1CAmDolzry6XSxpQ5SbEQU-4xHlZxzMDnx8OT09umFQtvOg5B8bedyEmr_FiP3SbTW_7n663AUskmUaeAfxVmVLoG653UnKSf39EhcvmdznG-Dg9XiWGCxgx1JtlIWrRR2V31ERnqim6yJMvRpZP1QZWYERqlyDn6veL2edlewtp0p4rk6nDX6w5PzrxSXMETISe5xxQPZKAVp1L4QcKp2aeYCGVswyVSck0JwZIkwpxwhOGI1NdaCm5L8khME443oJZmqdoE5GNDw7Q2kBs-0kpYbKN7Qic0NnxHStYAv_rQkSg7j1sBjKfInUB8HllsIotNVGLTgKPPIS9F242_jOsWjCnDAocG7FRwRuXMfI1CblhN0GY82Ppl2D4snA0v-1H_fHCxDYv2SUX-yg7U8vGb2oV5MclHr-M99_t9AIs51Vs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Obstacle+Avoidance+Learning+for+Robot+Motion+Planning+in+Human%E2%80%93Robot+Integration+Environments&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Hong%2C+Yang&rft.au=Ding%2C+Zhiyu&rft.au=Yuan%2C+Yuan&rft.au=Chi%2C+Wenzheng&rft.date=2023-12-01&rft.issn=2379-8920&rft.eissn=2379-8939&rft.volume=15&rft.issue=4&rft.spage=2169&rft.epage=2178&rft_id=info:doi/10.1109%2FTCDS.2023.3242373&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCDS_2023_3242373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon