Policy Iteration Based Approximate Dynamic Programming Toward Autonomous Driving in Constrained Dynamic Environment

In the area of autonomous driving, it typically brings great difficulty in solving the motion planning problem since the vehicle model is nonlinear and the driving scenarios are complex. Particularly, most of the existing methods cannot be generalized to dynamically changing scenarios with varying s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems Jg. 24; H. 5; S. 1 - 11
Hauptverfasser: Lin, Ziyu, Ma, Jun, Duan, Jingliang, Li, Shengbo Eben, Ma, Haitong, Cheng, Bo, Lee, Tong Heng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1524-9050, 1558-0016
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the area of autonomous driving, it typically brings great difficulty in solving the motion planning problem since the vehicle model is nonlinear and the driving scenarios are complex. Particularly, most of the existing methods cannot be generalized to dynamically changing scenarios with varying surrounding vehicles. To address this problem, this development here investigates the framework of integrated decision and control. As part of the modules, static path planning determines the reference candidates ahead, and then the optimal path-tracking controller realizes the specific autonomous driving task. An innovative and effective constrained finite-horizon approximate dynamic programming (ADP) algorithm is herein presented to generate the desired control policy for effective path tracking. With the generalized policy neural network that maps from the state to the control input, the proposed algorithm preserves the high effectiveness for the motion planning problem towards changing driving environments with varying surrounding vehicles. Moreover, the algorithm attains the noteworthy advantage of alleviating the typically heavy computational loads with the mode of offline training and online execution. As a result of the utilization of multi-layer neural networks in conjunction with the actor-critic framework, the constrained ADP method is capable of handling complex and multidimensional scenarios. Finally, various simulations have been carried out to show that the constrained ADP algorithm is effective.
AbstractList In the area of autonomous driving, it typically brings great difficulty in solving the motion planning problem since the vehicle model is nonlinear and the driving scenarios are complex. Particularly, most of the existing methods cannot be generalized to dynamically changing scenarios with varying surrounding vehicles. To address this problem, this development here investigates the framework of integrated decision and control. As part of the modules, static path planning determines the reference candidates ahead, and then the optimal path-tracking controller realizes the specific autonomous driving task. An innovative and effective constrained finite-horizon approximate dynamic programming (ADP) algorithm is herein presented to generate the desired control policy for effective path tracking. With the generalized policy neural network that maps from the state to the control input, the proposed algorithm preserves the high effectiveness for the motion planning problem towards changing driving environments with varying surrounding vehicles. Moreover, the algorithm attains the noteworthy advantage of alleviating the typically heavy computational loads with the mode of offline training and online execution. As a result of the utilization of multi-layer neural networks in conjunction with the actor-critic framework, the constrained ADP method is capable of handling complex and multidimensional scenarios. Finally, various simulations have been carried out to show that the constrained ADP algorithm is effective.
Author Duan, Jingliang
Li, Shengbo Eben
Ma, Haitong
Cheng, Bo
Ma, Jun
Lee, Tong Heng
Lin, Ziyu
Author_xml – sequence: 1
  givenname: Ziyu
  orcidid: 0000-0003-0532-0030
  surname: Lin
  fullname: Lin, Ziyu
  organization: School of Vehicle and Mobility, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-9405-8232
  surname: Ma
  fullname: Ma, Jun
  organization: Robotics and Autonomous Systems Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
– sequence: 3
  givenname: Jingliang
  orcidid: 0000-0002-3697-1576
  surname: Duan
  fullname: Duan, Jingliang
  organization: School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 4
  givenname: Shengbo Eben
  orcidid: 0000-0003-4923-3633
  surname: Li
  fullname: Li, Shengbo Eben
  organization: School of Vehicle and Mobility, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Haitong
  orcidid: 0000-0002-9943-0638
  surname: Ma
  fullname: Ma, Haitong
  organization: School of Vehicle and Mobility, Tsinghua University, Beijing, China
– sequence: 6
  givenname: Bo
  orcidid: 0000-0002-2785-516X
  surname: Cheng
  fullname: Cheng, Bo
  organization: School of Vehicle and Mobility, Tsinghua University, Beijing, China
– sequence: 7
  givenname: Tong Heng
  surname: Lee
  fullname: Lee, Tong Heng
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
BookMark eNp9kEFPwyAYhomZidv0B5h4IPHcCbSF9ji3qUuWuMR6JkjZwrLCBDrdv5e6mRgPniDwPh-8zwD0jDUKgGuMRhij8q6aVy8jgkg6SknKclqcgT7O8yJBCNNetydZUqIcXYCB95t4muUY94Ff2q2WBzgPyomgrYH3wqsajnc7Zz91I4KC04MRjZZw6ezaiabRZg0r-yFcjLXBGtvY1sOp0_vuRhs4scYHJ7SJg37gmdlrZ02jTLgE5yux9erqtA7B68Osmjwli-fH-WS8SCQps5AUVJaICSZLgWtEZSyS1nUpFCGE1YVIiVSypCwv2eqtyKmqFcYppTXGhBVplg7B7XFurPLeKh_4xrbOxCc5KTBmhGUUxRQ7pqSz3ju14lKHbxVdhS3HiHeGeWeYd4b5yXAk8R9y56Ixd_iXuTkyWin1K48IpfEzX8pcinE
CODEN ITISFG
CitedBy_id crossref_primary_10_1016_j_robot_2024_104676
crossref_primary_10_1109_JAS_2024_124950
crossref_primary_10_1109_TSMC_2024_3417230
crossref_primary_10_3390_drones9080569
crossref_primary_10_1002_rnc_7659
crossref_primary_10_1109_TVT_2024_3399826
crossref_primary_10_1016_j_robot_2023_104616
crossref_primary_10_1109_TASE_2023_3347264
crossref_primary_10_1007_s11071_025_11393_9
crossref_primary_10_3390_electronics14071483
crossref_primary_10_1109_TIM_2025_3545523
crossref_primary_10_1007_s10489_023_05233_9
crossref_primary_10_3390_s24175746
crossref_primary_10_1109_LCSYS_2025_3547629
crossref_primary_10_1109_TSMC_2024_3412172
crossref_primary_10_1002_oca_3142
crossref_primary_10_3390_electronics13050936
crossref_primary_10_1016_j_enconman_2023_117753
crossref_primary_10_1007_s11071_024_09843_x
crossref_primary_10_1016_j_neucom_2024_127835
crossref_primary_10_1007_s10489_024_05593_w
crossref_primary_10_1109_LRA_2024_3381088
crossref_primary_10_3389_fnbot_2025_1549414
crossref_primary_10_1016_j_trc_2024_104654
crossref_primary_10_1016_j_eswa_2025_128994
crossref_primary_10_1109_TITS_2023_3336670
crossref_primary_10_1109_TSMC_2024_3392756
Cites_doi 10.1007/978-3-319-50815-3
10.1007/s12532-018-0139-4
10.1109/YAC.2016.7804933
10.1109/ICUS50048.2020.9274944
10.1109/TNNLS.2022.3165846
10.1109/TIE.2022.3153800
10.1109/TITS.2019.2916354
10.1109/TNNLS.2019.2900510
10.1109/IVWorkshops54471.2021.9669260
10.1504/IJVAS.2005.008237
10.1109/TITS.2021.3094215
10.1109/TITS.2022.3194571
10.1016/j.neucom.2021.04.134
10.1109/TITS.2020.3036984
10.1049/iet-its.2019.0249
10.1109/TSMC.1987.289329
10.1109/TITS.2020.3046646
10.1049/iet-its.2019.0317
10.1007/978-981-19-7784-8
10.1109/ChiCC.2014.6896497
10.1109/TCST.2010.2049203
10.1109/TNNLS.2022.3225090
10.1109/TITS.2015.2453404
10.1109/TCYB.2020.3032711
10.1109/TCST.2017.2753169
10.1109/TCYB.2022.3163816
10.1109/TNNLS.2021.3082568
10.1002/9780470182963
10.1038/497181a
10.1109/ICCCR49711.2021.9349412
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2023.3237568
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 11
ExternalDocumentID 10_1109_TITS_2023_3237568
10026660
Genre orig-research
GrantInformation_xml – fundername: NSF China
  grantid: U20A20334; 52072213; 52202487
– fundername: Tsinghua University-Toyota Joint Research Center for AI Technology of Automated Vehicle
– fundername: National Key Research and Development Program of China; National Key R&D Program of China
  grantid: 2022YFB2502901
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
ZY4
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-86c907a7c9a1d06c0163dd9ae2227d8a32cec967597fb856ede11366d11278343
IEDL.DBID RIE
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001054283300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sun Nov 30 04:33:09 EST 2025
Tue Nov 18 21:58:05 EST 2025
Sat Nov 29 06:35:02 EST 2025
Wed Aug 27 02:18:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-86c907a7c9a1d06c0163dd9ae2227d8a32cec967597fb856ede11366d11278343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3697-1576
0000-0002-2785-516X
0000-0002-9943-0638
0000-0003-4923-3633
0000-0003-0532-0030
0000-0002-9405-8232
PQID 2811727460
PQPubID 75735
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TITS_2023_3237568
ieee_primary_10026660
proquest_journals_2811727460
crossref_primary_10_1109_TITS_2023_3237568
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
dixit (ref7) 2019; 21
ref2
ref1
guan (ref32) 2021
ref17
ref19
ref18
howard (ref23) 1960
powell (ref22) 2007
werbos (ref21) 1992
ref24
ref26
ref25
ref20
duan (ref16) 2022; 33
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref25
  doi: 10.1007/978-3-319-50815-3
– ident: ref33
  doi: 10.1007/s12532-018-0139-4
– ident: ref27
  doi: 10.1109/YAC.2016.7804933
– ident: ref24
  doi: 10.1109/ICUS50048.2020.9274944
– ident: ref13
  doi: 10.1109/TNNLS.2022.3165846
– ident: ref9
  doi: 10.1109/TIE.2022.3153800
– volume: 21
  start-page: 2310
  year: 2019
  ident: ref7
  article-title: Trajectory planning for autonomous high-speed overtaking in structured environments using robust MPC
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2916354
– ident: ref15
  doi: 10.1109/TNNLS.2019.2900510
– ident: ref31
  doi: 10.1109/IVWorkshops54471.2021.9669260
– ident: ref4
  doi: 10.1504/IJVAS.2005.008237
– ident: ref12
  doi: 10.1109/TITS.2021.3094215
– ident: ref11
  doi: 10.1109/TITS.2022.3194571
– start-page: 493
  year: 1992
  ident: ref21
  article-title: Approximate dynamic programming for real time control and neural modelling
  publication-title: Handbook of Intelligent Control Neural Fuzzy and Adaptive Approaches
– ident: ref2
  doi: 10.1016/j.neucom.2021.04.134
– ident: ref8
  doi: 10.1109/TITS.2020.3036984
– ident: ref17
  doi: 10.1049/iet-its.2019.0249
– ident: ref28
  doi: 10.1109/TSMC.1987.289329
– ident: ref20
  doi: 10.1109/TITS.2020.3046646
– ident: ref14
  doi: 10.1049/iet-its.2019.0317
– year: 2021
  ident: ref32
  article-title: Mixed policy gradient
  publication-title: arXiv 2102 11513
– ident: ref19
  doi: 10.1007/978-981-19-7784-8
– ident: ref26
  doi: 10.1109/ChiCC.2014.6896497
– ident: ref3
  doi: 10.1109/TCST.2010.2049203
– ident: ref29
  doi: 10.1109/TNNLS.2022.3225090
– ident: ref5
  doi: 10.1109/TITS.2015.2453404
– ident: ref10
  doi: 10.1109/TCYB.2020.3032711
– ident: ref6
  doi: 10.1109/TCST.2017.2753169
– ident: ref30
  doi: 10.1109/TCYB.2022.3163816
– year: 1960
  ident: ref23
  publication-title: Dynamic Programming and Markov Processes
– volume: 33
  start-page: 6584
  year: 2022
  ident: ref16
  article-title: Distributional soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3082568
– year: 2007
  ident: ref22
  publication-title: Approximate Dynamic Programming Solving the Curses of Dimensionality
  doi: 10.1002/9780470182963
– ident: ref1
  doi: 10.1038/497181a
– ident: ref18
  doi: 10.1109/ICCCR49711.2021.9349412
SSID ssj0014511
Score 2.52796
Snippet In the area of autonomous driving, it typically brings great difficulty in solving the motion planning problem since the vehicle model is nonlinear and the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
approximate dynamic programming
Approximation algorithms
Autonomous driving
Autonomous vehicles
constrained optimization
Dynamic programming
Heuristic algorithms
Iterative methods
Motion planning
Multilayers
Neural networks
Path planning
Path tracking
Planning
reinforcement learning
Roads
Task analysis
Tracking control
Vehicle dynamics
Title Policy Iteration Based Approximate Dynamic Programming Toward Autonomous Driving in Constrained Dynamic Environment
URI https://ieeexplore.ieee.org/document/10026660
https://www.proquest.com/docview/2811727460
Volume 24
WOSCitedRecordID wos001054283300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46POjBnxOnU3LwJHRr0585TrfhQMbACruVNkmhoJ2srfjn-17azoEoeCkt5IXQr03eS977PkJu7UAlAnfuzTRhhqNSmAc5Sw0eC4DbEkkgdaHwkz-fB8slXzTF6roWRimlk8_UAG_1Wb5ciQq3yoZIFwruNkTou77v1cVamyMDJNrS5KjMMbjptkeYlsmH4Sx8HqBO-MBmtu8irerWIqRVVX5MxXp9mR79c2TH5LBxJOmoRv6E7Kj8lBxs0QuekaIm_aUzzZwMANB7WLMkHSGP-GcGvqqi41qRni7qPK03MKShTqWlo6rEiodVVdDxOsONB5rlFBU-ta4EdNQaT76r5brkZToJHx6NRmTBEIw7pRF4AuLj2Bc8tqTpCXABbSl5rLBIVgaxzYQC2HwIPNIkcD0lFcrAeBIcNRTpsM9JJ1_l6oLQJIXgTsCFJdJJfDv23NRnwoZGlgMPPWK2bz0SDQM5Dvg10pGIySMEKkKgogaoHrnbmLzX9Bt_Ne4iMlsNa1B6pN9iGzV_aBExrLCFkNwzL38xuyL72Hud3dgnnXJdqWuyJz7KrFjf6I_vC3kc198
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA4yBfXBnxOnU_Pgk9CtTX_mcbqNDecYWGFvoU1SGOgmWyf--d6l3RyIgi-lhVwb-rXJXXL3fYTcupFOJa7c21nKLE9nMA5yllk8kQC3I9NImULhQTgcRuMxH5XF6qYWRmttks90A0_NXr6aySUulTWRLhTcbYjQt1E6yy_KtdabBki1ZehRmWdx219tYjo2b8b9-LmBSuENl7mhj8SqG9OQ0VX5MRibGaZ7-M--HZGD0pWkrQL7Y7Klpydkf4Ng8JQsCtpf2jfcyQABvYdZS9EWMol_TsBb1bRdaNLTUZGp9QaGNDbJtLS1zLHmYbZc0PZ8gksPdDKlqPFplCXgRivjzne9XJW8dDvxQ88qZRYsybiXW1EgIUJOQskTR9mBBCfQVYonGstkVZS4TGoALoTQI0sjP9BKoxBMoMBVQ5kO94xUprOpPic0zSC8k3BgqfLS0E0CPwuZdKGR48FFjdirty5kyUGOHX4VJhaxuUCgBAIlSqBq5G5t8l4QcPzVuIrIbDQsQKmR-gpbUf6jC8GwxhaC8sC--MXshuz24qeBGPSHj5dkD59U5DrWSSWfL_UV2ZEf-WQxvzYf4hflR9sq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Policy+Iteration+Based+Approximate+Dynamic+Programming+Toward+Autonomous+Driving+in+Constrained+Dynamic+Environment&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Lin%2C+Ziyu&rft.au=Ma%2C+Jun&rft.au=Duan%2C+Jingliang&rft.au=Shengbo+Eben+Li&rft.date=2023-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=24&rft.issue=5&rft.spage=5003&rft_id=info:doi/10.1109%2FTITS.2023.3237568&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon