Semi-Supervised Deep Conditional Variational Autoencoder for Soft Sensor Modeling
Variational autoencoder (VAE) as an unsupervised deep generated model has been widely applied to process modeling for industrial processes due to its excellent ability in nonlinear and uncertain feature extraction. However, soft sensor based on VAE model faces three challenges. First, the constructe...
Uložené v:
| Vydané v: | IEEE sensors journal Ročník 24; číslo 5; s. 7153 - 7164 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Variational autoencoder (VAE) as an unsupervised deep generated model has been widely applied to process modeling for industrial processes due to its excellent ability in nonlinear and uncertain feature extraction. However, soft sensor based on VAE model faces three challenges. First, the constructed supervised VAE model makes it difficult to describe the correlation between input and output based on self-network. Second, the output of the VAE may suffer from instability and uncontrollability. In addition, the limited labeled data in industries are the third challenge. To solve the above problems, a semi-supervised deep conditional VAE (SS-DCVAE) is constructed for soft sensor based on a supervised DCVAE (S-DCVAE) and an unsupervised DCVAE (U-DCVAE). The S-DCVAE model is constructed by injecting unlabeled data, the actual labels, and estimated labels as constraint conditions from the preneural network. Based on such a conditional supervised structure, the input-output correlation can be strengthened and the generated data can be controlled toward the aim direction. Furthermore, the U-DCVAE model can be built by making the latent distribution as similar as possible to S-DCVAE, as well as only using unlabeled data with corresponding estimated labels. In this way, the unlabeled data can be fully utilized and online prediction can be achieved. Finally, combining the decoder of S-DCVAE model with the encoder of U-DCVAE, the SS-DCVAE model is constructed with both advantages. The effectiveness and superiority of the SS-DCVAE model are demonstrated by comparing the prediction results of the proposed model with other deep learning methods based on industrial cases. |
|---|---|
| AbstractList | Variational autoencoder (VAE) as an unsupervised deep generated model has been widely applied to process modeling for industrial processes due to its excellent ability in nonlinear and uncertain feature extraction. However, soft sensor based on VAE model faces three challenges. First, the constructed supervised VAE model makes it difficult to describe the correlation between input and output based on self-network. Second, the output of the VAE may suffer from instability and uncontrollability. In addition, the limited labeled data in industries are the third challenge. To solve the above problems, a semi-supervised deep conditional VAE (SS-DCVAE) is constructed for soft sensor based on a supervised DCVAE (S-DCVAE) and an unsupervised DCVAE (U-DCVAE). The S-DCVAE model is constructed by injecting unlabeled data, the actual labels, and estimated labels as constraint conditions from the preneural network. Based on such a conditional supervised structure, the input–output correlation can be strengthened and the generated data can be controlled toward the aim direction. Furthermore, the U-DCVAE model can be built by making the latent distribution as similar as possible to S-DCVAE, as well as only using unlabeled data with corresponding estimated labels. In this way, the unlabeled data can be fully utilized and online prediction can be achieved. Finally, combining the decoder of S-DCVAE model with the encoder of U-DCVAE, the SS-DCVAE model is constructed with both advantages. The effectiveness and superiority of the SS-DCVAE model are demonstrated by comparing the prediction results of the proposed model with other deep learning methods based on industrial cases. |
| Author | Li, Yuan Song, Zhihuan Tang, Xiaochu Zhang, Xinmin Yan, Jiawei |
| Author_xml | – sequence: 1 givenname: Xiaochu orcidid: 0000-0002-8787-0978 surname: Tang fullname: Tang, Xiaochu email: tangxc0420@126.com organization: School of Automation, Shenyang Aerospace University, Shenyang, China – sequence: 2 givenname: Jiawei orcidid: 0000-0002-4593-2413 surname: Yan fullname: Yan, Jiawei organization: School of Automation, Shenyang Aerospace University, Shenyang, China – sequence: 3 givenname: Yuan surname: Li fullname: Li, Yuan organization: College of Information Engineering, Shenyang University of Chemical Technology, Shenyang, China – sequence: 4 givenname: Xinmin orcidid: 0000-0002-4761-3969 surname: Zhang fullname: Zhang, Xinmin organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China – sequence: 5 givenname: Zhihuan surname: Song fullname: Song, Zhihuan organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China |
| BookMark | eNp9kF1LwzAUhoNMcJv-AMGLgtedSZM07eWY84upSId4F9L0RDK6Ziat4L-3dbsQL7zKS3ifwznPBI0a1wBC5wTPCMH51UOxfJolOGEzSjlhlByhMeE8i4lg2WjIFMeMircTNAlhgzHJBRdj9FLA1sZFtwP_aQNU0TXALlq4prKtdY2qo1flrTrkedc6aLSrwEfG-ahwpo0KaEKfH_vf2jbvp-jYqDrA2eGdovXNcr24i1fPt_eL-SrWSc7aOKOaKIWBJpiktEqrnHJWQcVToU2phFZQmqzMFNWcGUGoKIXhJVPaMJxiOkWX-7E77z46CK3cuM73SwaZ5DThgolkaIl9S3sXggcjtW1_rmm9srUkWA765KBPDvrkQV9Pkj_kztut8l__Mhd7xgLArz7DmFFKvwHpPH4J |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1109_TASE_2025_3576122 crossref_primary_10_1002_cjce_25447 crossref_primary_10_1016_j_ins_2024_121565 crossref_primary_10_1016_j_measurement_2025_116761 crossref_primary_10_1109_TCYB_2025_3580633 crossref_primary_10_1109_TASE_2024_3504736 crossref_primary_10_3390_pr12091807 crossref_primary_10_1016_j_jprocont_2025_103497 |
| Cites_doi | 10.1002/9781118501054 10.1109/TIM.2020.2968162 10.1016/j.jprocont.2018.04.006 10.1109/TII.2018.2809730 10.1109/TII.2019.2951622 10.1109/JSEN.2020.3003826 10.1109/TIM.2006.887331 10.1016/j.compchemeng.2007.07.005 10.1016/j.chemolab.2010.11.004 10.1162/neco.2006.18.7.1527 10.1109/TNNLS.2020.3015929 10.48550/arXiv.1312.6114 10.1109/TCYB.2020.3010331 10.48550/ARXIV.1404.7828 10.1109/JSEN.2021.3128562 10.3390/s23229175 10.1109/TII.2019.2902560 10.1016/j.measurement.2017.09.025 10.1109/TIE.2017.2733448 10.1109/TIE.2018.2856200 10.1016/j.eng.2019.01.019 10.1109/TII.2021.3110197 10.1109/TII.2022.3183211 10.1016/j.compchemeng.2008.12.012 10.1109/TIE.2016.2622668 10.1016/j.jprocont.2014.01.012 10.1016/j.measurement.2022.111974 10.1109/TII.2018.2880968 10.1016/j.jprocont.2019.11.004 10.1109/TCST.2018.2856845 10.1038/nature14539 10.1109/JSEN.2022.3201706 10.1016/j.ifacsc.2021.100150 10.1016/j.chemolab.2019.05.001 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2024.3351431 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 7164 |
| ExternalDocumentID | 10_1109_JSEN_2024_3351431 10400433 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Liaoning Province grantid: 2023-MS-242 funderid: 10.13039/501100005047 – fundername: National Natural Science Foundation of China (NSFC) grantid: 62273242 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c294t-83c1aa0e320163d6d9354ded567cfba7caebf8b8a3c54f7137b7f5b4acf40603 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001280059600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 08:29:37 EDT 2025 Sat Nov 29 06:39:52 EST 2025 Tue Nov 18 22:37:17 EST 2025 Wed Aug 27 02:08:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-83c1aa0e320163d6d9354ded567cfba7caebf8b8a3c54f7137b7f5b4acf40603 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4761-3969 0000-0002-4593-2413 0000-0002-8787-0978 |
| PQID | 2932574720 |
| PQPubID | 75733 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2932574720 crossref_citationtrail_10_1109_JSEN_2024_3351431 ieee_primary_10400433 crossref_primary_10_1109_JSEN_2024_3351431 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref14 Doersch (ref22) 2016 ref36 ref31 ref30 ref11 ref33 ref10 Jiang (ref20) 2016 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – year: 2016 ident: ref20 article-title: Variational deep embedding: An unsupervised and generative approach to clustering publication-title: arXiv:1611.05148 – ident: ref1 doi: 10.1002/9781118501054 – ident: ref23 doi: 10.1109/TIM.2020.2968162 – ident: ref5 doi: 10.1016/j.jprocont.2018.04.006 – ident: ref19 doi: 10.1109/TII.2018.2809730 – ident: ref24 doi: 10.1109/TII.2019.2951622 – ident: ref31 doi: 10.1109/JSEN.2020.3003826 – ident: ref10 doi: 10.1109/TIM.2006.887331 – ident: ref3 doi: 10.1016/j.compchemeng.2007.07.005 – ident: ref7 doi: 10.1016/j.chemolab.2010.11.004 – ident: ref11 doi: 10.1162/neco.2006.18.7.1527 – ident: ref17 doi: 10.1109/TNNLS.2020.3015929 – ident: ref21 doi: 10.48550/arXiv.1312.6114 – ident: ref18 doi: 10.1109/TCYB.2020.3010331 – ident: ref13 doi: 10.48550/ARXIV.1404.7828 – ident: ref27 doi: 10.1109/JSEN.2021.3128562 – ident: ref36 doi: 10.3390/s23229175 – ident: ref33 doi: 10.1109/TII.2019.2902560 – ident: ref8 doi: 10.1016/j.measurement.2017.09.025 – ident: ref28 doi: 10.1109/TIE.2017.2733448 – ident: ref29 doi: 10.1109/TIE.2018.2856200 – ident: ref4 doi: 10.1016/j.eng.2019.01.019 – ident: ref25 doi: 10.1109/TII.2021.3110197 – ident: ref35 doi: 10.1109/TII.2022.3183211 – ident: ref2 doi: 10.1016/j.compchemeng.2008.12.012 – ident: ref14 doi: 10.1109/TIE.2016.2622668 – ident: ref15 doi: 10.1016/j.jprocont.2014.01.012 – ident: ref6 doi: 10.1016/j.measurement.2022.111974 – year: 2016 ident: ref22 article-title: Tutorial on variational autoencoders publication-title: arXiv:1606.05908 – ident: ref16 doi: 10.1109/TII.2018.2880968 – ident: ref26 doi: 10.1016/j.jprocont.2019.11.004 – ident: ref32 doi: 10.1109/TCST.2018.2856845 – ident: ref12 doi: 10.1038/nature14539 – ident: ref30 doi: 10.1109/JSEN.2022.3201706 – ident: ref34 doi: 10.1016/j.ifacsc.2021.100150 – ident: ref9 doi: 10.1016/j.chemolab.2019.05.001 |
| SSID | ssj0019757 |
| Score | 2.4473493 |
| Snippet | Variational autoencoder (VAE) as an unsupervised deep generated model has been widely applied to process modeling for industrial processes due to its excellent... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7153 |
| SubjectTerms | Data mining Data models Decoding Deep learning Feature extraction Labels Machine learning Modelling semi-supervised (SS) model Sensors soft sensor Soft sensors supervised conditional variational autoencoder (VAE) |
| Title | Semi-Supervised Deep Conditional Variational Autoencoder for Soft Sensor Modeling |
| URI | https://ieeexplore.ieee.org/document/10400433 https://www.proquest.com/docview/2932574720 |
| Volume | 24 |
| WOSCitedRecordID | wos001280059600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3JSsNA9GGLoB5cK9aNOXgSokkmySTH4oKIFCWl9BaSmTdY0LZ0Efx730xGqYiCtznMhPD2_QGcVWSE6wyJeLXSXlSJxEtJ8Xg8JV0SKBko2_XefxDdbjoYZI-uWd32wiCiLT7DC3O0uXw1lgsTKiMONxTHeQMaQiR1s9ZXyiATdqwncbDvRVwMXAoz8LPL-_ymS65gGF1wU7jOg29KyG5V-SGKrX653frnn23DpjMkWafG_A6s4GgXNpbGC-7Cmttw_vy-B085vg69fDExsmGGil0jTtjV2GSsbTSQ9clrdpFB1lnMx2bCpcIpI6uW5SSsWU4eL53N9jTTw96C3u1N7-rOc-sUPBlm0dxLuQzK0kdOOj_hKlEZjyOFKk6E1FUpZImVTqu05DKONDmvohI6rqJSatL6Pt-H5mg8wgNgJQoCZCplbKbNVZjxRPJQJ6Gi51InbfA_wVtIN2rcbLx4KazL4WeFwUhhMFI4jLTh_OvJpJ6z8dfllkHB0sUa-m04_kRi4VhxVpA9Q2IpEqF_-MuzI1g3X68ry46hOZ8u8ARW5dt8OJueWir7AFStzrg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3JSsNA9OEG6sG1Yl3n4EmIJpkkkxxLVVxqUVKkt5DMvEFB29JF8O99Mx1FEQVvc5gh4e37AziqyAjXGRLxaqW9qBKJl5Li8XhKuiRQMlC26_2hJdrttNvN7lyzuu2FQURbfIYn5mhz-aovJyZURhxuKI7zWZg3q7Ncu9Zn0iATdrAn8bDvRVx0XRIz8LPT6_y8Tc5gGJ1wU7rOg29qyO5V-SGMrYa5WP3nv63BijMlWWOK-3WYwd4GLH8ZMLgBi27H-ePbJtzn-PLk5ZOBkQ4jVOwMccCafZOztvFA9kB-s4sNssZk3DczLhUOGdm1LCdxzXLyeels9qeZLvYadC7OO81Lzy1U8GSYRWMv5TIoSx85af2Eq0RlPI4UqjgRUlelkCVWOq3Skss40uS-ikrouIpKqUnv-3wL5nr9Hm4DK1EQIFMpYzNvrsKMJ5KHOgkVPZc6qYP_Ad5CumHjZufFc2GdDj8rDEYKg5HCYaQOx59PBtNJG39drhkUfLk4hX4d9j6QWDhmHBVk0ZBgikTo7_zy7BAWLzu3raJ11b7ZhSXzpWmd2R7MjYcT3IcF-Tp-Gg0PLMW9A0Px0gE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Supervised+Deep+Conditional+Variational+Autoencoder+for+Soft+Sensor+Modeling&rft.jtitle=IEEE+sensors+journal&rft.au=Tang%2C+Xiaochu&rft.au=Yan%2C+Jiawei&rft.au=Li%2C+Yuan&rft.au=Zhang%2C+Xinmin&rft.date=2024-03-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=24&rft.issue=5&rft.spage=7153&rft.epage=7164&rft_id=info:doi/10.1109%2FJSEN.2024.3351431&rft.externalDocID=10400433 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |