Exploring Fine-Grained In-Memory Database Performance for Modern CPUs
Modern CPUs keep integrating more cores and large size cache, which is beneficial for in-memory databases to improve parallel processing power and cache locality. While state-of-the-art CPUs have diverse architectures and roadmaps such as large core count and large cache size (AMD x86), moderate cor...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on parallel and distributed systems Jg. 34; H. 6; S. 1 - 16 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1045-9219, 1558-2183 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Modern CPUs keep integrating more cores and large size cache, which is beneficial for in-memory databases to improve parallel processing power and cache locality. While state-of-the-art CPUs have diverse architectures and roadmaps such as large core count and large cache size (AMD x86), moderate core count and cache size (intel x86), large core count and moderate cache size (ARM), exploring in-memory databases performance characteristics for different CPU architectures is important for in-memory database designs and optimizations. In this paper, we develop a fine-grained in-memory database benchmark to evaluate the performance of each operator on different CPUs to explore how CPU hardware architectures influence performance. Different from well known conclusions that more cores and larger cache size can achieve higher performance, we find out that the micro cache architectures play an important role opposite to core count and cache size, the shared monolithic L3 cache with moderate size beats large disaggregated L3 cache. The experiments also show that predicting operator performance on different CPUs is difficult according to diverse CPU architectures and micro cache architectures, and different implementations of each operator are not always high or low with interleaved strong and weak performance regions influenced by CPU hardware architectures. Intel x86 CPUs represent cache-centric processor design, while AMD x86 and ARM CPUs represent computing-centric processor design, the OLAP benchmark experiments of SSB discover that OmniSciDB and OLAP Accelerator with vector-wise processing model performs well on intel x86 CPUs compared to AMD x86 CPUs and the JIT compliant based Hyper prefers to AMD x86 CPUs rather than intel x86 CPUs. The CPU roadmaps of increasing cores or improving cache locality should be considered for in-memory database algorithm design and platform selection. |
|---|---|
| AbstractList | Modern CPUs keep integrating more cores and large size cache, which is beneficial for in-memory databases to improve parallel processing power and cache locality. While state-of-the-art CPUs have diverse architectures and roadmaps such as large core count and large cache size (AMD x86), moderate core count and cache size (intel x86), large core count and moderate cache size (ARM), exploring in-memory databases performance characteristics for different CPU architectures is important for in-memory database designs and optimizations. In this article, we develop a fine-grained in-memory database benchmark to evaluate the performance of each operator on different CPUs to explore how CPU hardware architectures influence performance. Different from well known conclusions that more cores and larger cache size can achieve higher performance, we find out that the micro cache architectures play an important role opposite to core count and cache size, the shared monolithic L3 cache with moderate size beats large disaggregated L3 cache. The experiments also show that predicting operator performance on different CPUs is difficult according to diverse CPU architectures and micro cache architectures, and different implementations of each operator are not always high or low with interleaved strong and weak performance regions influenced by CPU hardware architectures. Intel x86 CPUs represent cache-centric processor design, while AMD x86 and ARM CPUs represent computing-centric processor design, the OLAP benchmark experiments of SSB discover that OmniSciDB and OLAP Accelerator with vector-wise processing model performs well on intel x86 CPUs compared to AMD x86 CPUs and the JIT compliant based Hyper prefers to AMD x86 CPUs rather than intel x86 CPUs. The CPU roadmaps of increasing cores or improving cache locality should be considered for in-memory database algorithm design and platform selection. Modern CPUs keep integrating more cores and large size cache, which is beneficial for in-memory databases to improve parallel processing power and cache locality. While state-of-the-art CPUs have diverse architectures and roadmaps such as large core count and large cache size (AMD x86), moderate core count and cache size (intel x86), large core count and moderate cache size (ARM), exploring in-memory databases performance characteristics for different CPU architectures is important for in-memory database designs and optimizations. In this paper, we develop a fine-grained in-memory database benchmark to evaluate the performance of each operator on different CPUs to explore how CPU hardware architectures influence performance. Different from well known conclusions that more cores and larger cache size can achieve higher performance, we find out that the micro cache architectures play an important role opposite to core count and cache size, the shared monolithic L3 cache with moderate size beats large disaggregated L3 cache. The experiments also show that predicting operator performance on different CPUs is difficult according to diverse CPU architectures and micro cache architectures, and different implementations of each operator are not always high or low with interleaved strong and weak performance regions influenced by CPU hardware architectures. Intel x86 CPUs represent cache-centric processor design, while AMD x86 and ARM CPUs represent computing-centric processor design, the OLAP benchmark experiments of SSB discover that OmniSciDB and OLAP Accelerator with vector-wise processing model performs well on intel x86 CPUs compared to AMD x86 CPUs and the JIT compliant based Hyper prefers to AMD x86 CPUs rather than intel x86 CPUs. The CPU roadmaps of increasing cores or improving cache locality should be considered for in-memory database algorithm design and platform selection. |
| Author | Liu, Zhuan Zhang, Yu Lu, Yunfei Zhong, Tao Han, Ruichen Zhang, Yansong Dementiev, Roman Que, Mingjian Tang, Xi Deng, Gang |
| Author_xml | – sequence: 1 givenname: Zhuan orcidid: 0000-0001-7269-0280 surname: Liu fullname: Liu, Zhuan organization: Intel Corp, China – sequence: 2 givenname: Ruichen orcidid: 0009-0008-8561-3979 surname: Han fullname: Han, Ruichen organization: School of Information, Renmin University of China, Beijing, China – sequence: 3 givenname: Yansong orcidid: 0000-0003-2198-0987 surname: Zhang fullname: Zhang, Yansong organization: School of Information, Renmin University of China, Beijing, China – sequence: 4 givenname: Yu orcidid: 0009-0005-8048-9612 surname: Zhang fullname: Zhang, Yu organization: National Satellite Meteorological Center of China, Beijing, China – sequence: 5 givenname: Xi orcidid: 0009-0006-7235-5099 surname: Tang fullname: Tang, Xi organization: Intel Corp, China – sequence: 6 givenname: Gang orcidid: 0009-0004-4655-505X surname: Deng fullname: Deng, Gang organization: Intel Corp, China – sequence: 7 givenname: Tao orcidid: 0009-0008-8327-8345 surname: Zhong fullname: Zhong, Tao organization: Intel Corp, China – sequence: 8 givenname: Roman orcidid: 0009-0009-9183-2673 surname: Dementiev fullname: Dementiev, Roman organization: Intel Corp, China – sequence: 9 givenname: Yunfei orcidid: 0009-0004-5324-7493 surname: Lu fullname: Lu, Yunfei organization: Huawei Technologies Co., Ltd, Hangzhou, China – sequence: 10 givenname: Mingjian orcidid: 0009-0009-8351-515X surname: Que fullname: Que, Mingjian organization: Huawei Technologies Co., Ltd, Hangzhou, China |
| BookMark | eNp9UE1rAjEUDMVC1fYHFHpY6HltvnaTHItfFZQK1XOI2bdlRRObrFD_fSN6KD30NMNjZh4zPdRx3gFCjwQPCMHqZbUcfQwopmzAaEmFpDeoS4pC5pRI1kkc8yJXlKg71ItxizHhBeZdNB5_H3Y-NO4zmzQO8mkwCaps5vIF7H04ZSPTmo2JkC0h1D7sjbOQJZItfAXBZcPlOt6j29rsIjxcsY_Wk_Fq-JbP36ez4es8t1TxNpeEFpUSvBQCWy5IaYSs0skCLQ0VDGq7UTXHpCyYZYJDEmw4B6WsxAU1rI-eL7mH4L-OEFu99cfg0ktNU7jkRAiRVOKissHHGKDWtmlN23jXpnY7TbA-b6bPm-nzZvq6WXKSP85DaPYmnP71PF08DQD80mNZlqnHD-qtd4Y |
| CODEN | ITDSEO |
| CitedBy_id | crossref_primary_10_1109_TPEL_2025_3531414 crossref_primary_10_1016_j_future_2024_02_006 crossref_primary_10_1109_JSTARS_2025_3573026 |
| Cites_doi | 10.1109/ICDE.2019.00068 10.1145/3318464.3380595 10.1109/ICDE.2013.6544839 10.1109/ICDE.2018.00163 10.1109/TKDE.2015.2499199 10.1145/1995441.1995446 10.1145/3514221.3526054 10.14778/2735703.2735704 10.1145/1807167.1807221 10.1145/2882903.2882917 10.1007/s11704-011-9181-3 10.1145/1989323.1989328 10.14778/3151113.3151114 10.1145/3035918.3035946 10.1007/s10619-018-7226-4 10.1145/3448016.3452831 10.14778/2536206.2536216 10.1145/3514221.3526045 10.1109/TKDE.2018.2867522 10.1145/2723372.2747645 10.1007/s10619-020-07304-z 10.1145/1409360.1409380 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TPDS.2023.3262782 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2183 |
| EndPage | 16 |
| ExternalDocumentID | 10_1109_TPDS_2023_3262782 10086665 |
| Genre | orig-research |
| GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TN5 TWZ UHB 5VS AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L H~9 ICLAB IFJZH RNI RZB VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-8125d9746770c4716a78d25dce26a273efcb9f401653c374e6a7b44e99c8052a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000992499400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1045-9219 |
| IngestDate | Sun Nov 30 04:41:44 EST 2025 Sat Nov 29 06:06:50 EST 2025 Tue Nov 18 22:26:35 EST 2025 Wed Aug 27 02:25:54 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-8125d9746770c4716a78d25dce26a273efcb9f401653c374e6a7b44e99c8052a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7269-0280 0009-0008-8561-3979 0009-0008-8327-8345 0009-0009-8351-515X 0009-0004-5324-7493 0009-0005-8048-9612 0009-0006-7235-5099 0009-0004-4655-505X 0000-0003-2198-0987 0009-0009-9183-2673 |
| PQID | 2812841777 |
| PQPubID | 85437 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_TPDS_2023_3262782 crossref_primary_10_1109_TPDS_2023_3262782 ieee_primary_10086665 proquest_journals_2812841777 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on parallel and distributed systems |
| PublicationTitleAbbrev | TPDS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref24 ref12 ref23 ref15 halstead (ref14) 2015 ref20 ref11 ref22 ref10 ref21 ref2 ref17 ref16 ref19 ref18 ref8 (ref1) 2022 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref13 doi: 10.1109/ICDE.2019.00068 – year: 2015 ident: ref14 article-title: FPGA-based multithreading for in-memory hash joins publication-title: Proc Conf Innov Data Syst Res – ident: ref16 doi: 10.1145/3318464.3380595 – ident: ref4 doi: 10.1109/ICDE.2013.6544839 – ident: ref17 doi: 10.1109/ICDE.2018.00163 – ident: ref8 doi: 10.1109/TKDE.2015.2499199 – ident: ref9 doi: 10.1145/1995441.1995446 – ident: ref23 doi: 10.1145/3514221.3526054 – ident: ref11 doi: 10.14778/2735703.2735704 – ident: ref21 doi: 10.1145/1807167.1807221 – ident: ref20 doi: 10.1145/2882903.2882917 – ident: ref5 doi: 10.1007/s11704-011-9181-3 – ident: ref3 doi: 10.1145/1989323.1989328 – ident: ref24 doi: 10.14778/3151113.3151114 – ident: ref15 doi: 10.1145/3035918.3035946 – year: 2022 ident: ref1 article-title: November 2021 – ident: ref6 doi: 10.1007/s10619-018-7226-4 – ident: ref18 doi: 10.1145/3448016.3452831 – ident: ref12 doi: 10.14778/2536206.2536216 – ident: ref22 doi: 10.1145/3514221.3526045 – ident: ref7 doi: 10.1109/TKDE.2018.2867522 – ident: ref19 doi: 10.1145/2723372.2747645 – ident: ref10 doi: 10.1007/s10619-020-07304-z – ident: ref2 doi: 10.1145/1409360.1409380 |
| SSID | ssj0014504 |
| Score | 2.402435 |
| Snippet | Modern CPUs keep integrating more cores and large size cache, which is beneficial for in-memory databases to improve parallel processing power and cache... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Benchmark testing Benchmarks cache architecture Central processing units Computer architecture Computer memory CPUs Hardware In-memory database Micromechanical devices Microprocessors multi-core OLAP benchmark Operator performance Parallel processing Performance evaluation Performance prediction Program processors Sockets |
| Title | Exploring Fine-Grained In-Memory Database Performance for Modern CPUs |
| URI | https://ieeexplore.ieee.org/document/10086665 https://www.proquest.com/docview/2812841777 |
| Volume | 34 |
| WOSCitedRecordID | wos000992499400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2183 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014504 issn: 1045-9219 databaseCode: RIE dateStart: 19900101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5s8aAHq7VitUoOnoS0-05ylD5U0LJgC70t2WwWBNlKH4L_3kx2WxVR8BZCsiwzyX4zO48P4EqlmknuRzRlkaCBVJxynmrKZK5lmqV5mtkmrg9sPOazmYirYnVbC6O1tslnuotDG8vP5mqNv8p62IjGmNthDWqMsbJYaxsyCELLFWjci5AKcw-rEKbriN4kHjx1kSe8a4wVj3HvGwhZVpUfn2KLL6PGP9_sEA4qQ5LclJo_gh1dNKGxIWkg1Z1twv6XjoPHMNzm3JGRmaW3yBChM3Jf0EfMuX0nA7mSCG0k_iwpIGZAStY00o-nyxZMR8NJ_45WTApUeSJYUYPiYSaQWYQ5ysBRJBnPzJTSXiSNAaNzlYo8wNImX_ks0GZBGgRaCIWUB9I_gXoxL_QpEOW6uSMRxoyj5Sjf7DM2TqZ8iX0nWdQGZyPaRFVtxpHt4iWx7oYjEtRGgtpIKm204Xq75bXssfHX4haK_8vCUvJt6GwUmFTXcJl4HOHXNYfl7Jdt57CHTy-TvzpQXy3W-gJ21dvqebm4tCfsA2Rhy_g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFNQH52XidGoefBKy9ZI2zaPs4obbGDjBt5KmKQiyyS6C_96ctJuKKPgWQkLLOUm_c3ouH8C1SjSXkR_ShIeCMqkiGkWJplxmWiZpkiWpbeLa58Nh9PQkRkWxuq2F0Vrb5DNdx6GN5adTtcRfZQ1sRGPM7WATtgLGPDcv11oHDVhg2QKNgxFQYW5iEcR0HdEYj1oPdWQKrxtzxeOR9w2GLK_Kj4-xRZhO-Z_vdgD7hSlJbnPdH8KGnhxBeUXTQIpbewR7X3oOHkN7nXVHOmaW3iFHhE5Jb0IHmHX7TlpyIRHcyOizqICYAcl500hz9DivwGOnPW52acGlQJUn2IIaHA9Sgdwi3FEGkELJo9RMKe2F0pgwOlOJyBgWN_nK50ybBQljWgiFpAfSP4HSZDrRp0CU62aORCAzrpajfLPPWDmp8iV2nuRhFZyVaGNVNBpHvouX2DocjohRGzFqIy60UYWb9ZbXvMvGX4srKP4vC3PJV6G2UmBcXMR57EUIwC7n_OyXbVew0x0P-nG_N7w_h118Up4KVoPSYrbUF7Ct3hbP89mlPW0fL4zPPw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Fine-Grained+In-Memory+Database+Performance+for+Modern+CPUs&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Liu%2C+Zhuan&rft.au=Han%2C+Ruichen&rft.au=Zhang%2C+Yansong&rft.au=Zhang%2C+Yu&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=1045-9219&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTPDS.2023.3262782&rft.externalDocID=10086665 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |