Enhanced CNN for Fruit Disease Detection and Grading Classification Using SSDAE-SVM for Postharvest Fruits
In the realm of agriculture, leveraging image processing has become pivotal for robust image analysis, especially in detecting fruit diseases. However, existing techniques in this domain often limit inputs to fixed sizes without reshaping images before neural network (NN) input, complicating disease...
Gespeichert in:
| Veröffentlicht in: | IEEE sensors journal Jg. 24; H. 5; S. 6719 - 6732 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the realm of agriculture, leveraging image processing has become pivotal for robust image analysis, especially in detecting fruit diseases. However, existing techniques in this domain often limit inputs to fixed sizes without reshaping images before neural network (NN) input, complicating disease detection and compromising image resolution, thereby escalating postharvest losses. To address this, an innovative approach has been developed a unique enhanced convolutional NN (CNN) employing spatial pyramid pooling (SPP) and adaptive momentum BP that integrates the best finite impulse response (FIR) filter for preprocessing. This method aims to reorganize the fruit detection process while maintaining high image resolution. The CNN, with its SPP, utilizes convolutional layers to extract diverse features encompassing color, shape, texture, and surface attributes crucial for accurate disease detection. Furthermore, efficient fruit grading is essential to combat issues such as poor product quality, slow grading speeds, and accuracy concerns, all contributing to postharvest losses. In response, a novel integrated stacked sparse denoising autoencoder-support vector machine (SSDAE-SVM) approach, coupled with dropout mechanisms, has been proposed to streamline fruit grading and mitigate postharvest losses. The strategic use of dropout layers mitigates overfitting and information loss during feature extraction, while the SVM classifier, serving as the output layer, ensures accurate fruit grading, thereby curbing postharvest losses. Consequently, this proposed method not only simplifies disease detection and grading processes but also enhances quality, accuracy, reliability, and speed. The model's performance surpasses previous disease prediction models, exhibiting an impressive accuracy of 97.25%, a minimal prediction error of 0.15, a high specificity of 95.62%, an <inline-formula> <tex-math notation="LaTeX">{F}1 </tex-math></inline-formula>-score of 98.81%, and a remarkable recall rate of 98.98%. |
|---|---|
| AbstractList | In the realm of agriculture, leveraging image processing has become pivotal for robust image analysis, especially in detecting fruit diseases. However, existing techniques in this domain often limit inputs to fixed sizes without reshaping images before neural network (NN) input, complicating disease detection and compromising image resolution, thereby escalating postharvest losses. To address this, an innovative approach has been developed a unique enhanced convolutional NN (CNN) employing spatial pyramid pooling (SPP) and adaptive momentum BP that integrates the best finite impulse response (FIR) filter for preprocessing. This method aims to reorganize the fruit detection process while maintaining high image resolution. The CNN, with its SPP, utilizes convolutional layers to extract diverse features encompassing color, shape, texture, and surface attributes crucial for accurate disease detection. Furthermore, efficient fruit grading is essential to combat issues such as poor product quality, slow grading speeds, and accuracy concerns, all contributing to postharvest losses. In response, a novel integrated stacked sparse denoising autoencoder–support vector machine (SSDAE-SVM) approach, coupled with dropout mechanisms, has been proposed to streamline fruit grading and mitigate postharvest losses. The strategic use of dropout layers mitigates overfitting and information loss during feature extraction, while the SVM classifier, serving as the output layer, ensures accurate fruit grading, thereby curbing postharvest losses. Consequently, this proposed method not only simplifies disease detection and grading processes but also enhances quality, accuracy, reliability, and speed. The model’s performance surpasses previous disease prediction models, exhibiting an impressive accuracy of 97.25%, a minimal prediction error of 0.15, a high specificity of 95.62%, an [Formula Omitted]-score of 98.81%, and a remarkable recall rate of 98.98%. In the realm of agriculture, leveraging image processing has become pivotal for robust image analysis, especially in detecting fruit diseases. However, existing techniques in this domain often limit inputs to fixed sizes without reshaping images before neural network (NN) input, complicating disease detection and compromising image resolution, thereby escalating postharvest losses. To address this, an innovative approach has been developed a unique enhanced convolutional NN (CNN) employing spatial pyramid pooling (SPP) and adaptive momentum BP that integrates the best finite impulse response (FIR) filter for preprocessing. This method aims to reorganize the fruit detection process while maintaining high image resolution. The CNN, with its SPP, utilizes convolutional layers to extract diverse features encompassing color, shape, texture, and surface attributes crucial for accurate disease detection. Furthermore, efficient fruit grading is essential to combat issues such as poor product quality, slow grading speeds, and accuracy concerns, all contributing to postharvest losses. In response, a novel integrated stacked sparse denoising autoencoder-support vector machine (SSDAE-SVM) approach, coupled with dropout mechanisms, has been proposed to streamline fruit grading and mitigate postharvest losses. The strategic use of dropout layers mitigates overfitting and information loss during feature extraction, while the SVM classifier, serving as the output layer, ensures accurate fruit grading, thereby curbing postharvest losses. Consequently, this proposed method not only simplifies disease detection and grading processes but also enhances quality, accuracy, reliability, and speed. The model's performance surpasses previous disease prediction models, exhibiting an impressive accuracy of 97.25%, a minimal prediction error of 0.15, a high specificity of 95.62%, an <inline-formula> <tex-math notation="LaTeX">{F}1 </tex-math></inline-formula>-score of 98.81%, and a remarkable recall rate of 98.98%. |
| Author | Patil, Nitin J. Patel, Himanshu B. |
| Author_xml | – sequence: 1 givenname: Himanshu B. orcidid: 0000-0002-9994-3126 surname: Patel fullname: Patel, Himanshu B. email: himanshu74patel@gmail.com organization: D. N. Patel College of Engineering, Shahada, India – sequence: 2 givenname: Nitin J. surname: Patil fullname: Patil, Nitin J. email: nitinpatil2002@gmail.com organization: D. N. Patel College of Engineering, Shahada, India |
| BookMark | eNp9kE1Lw0AQhhepYK3-AMFDwHPqfiTZ3WNJP1RqFWLFW9huZu2WmtTdVPDfmzQ9iAdPM8y87zvMc456ZVUCQlcEDwnB8vYhmyyGFFM2ZCyigrET1CdxLELCI9Fre4bDiPG3M3Tu_QZjInnM-2gzKdeq1FAE6WIRmMoFU7e3dTC2HpSHYAw16NpWZaDKIpg5VdjyPUi3yntrrFaH1dK3wywbjyZh9vp4iHmufL1W7gt83UX6C3Rq1NbD5bEO0HI6eUnvwvnT7D4dzUNNZVSHvABDtVIJ1loaKTgzKyMKDhywNEKtIsUTkEqoQnOjMdaAQfNiRVkiTETZAN10uTtXfe6b-_mm2ruyOZlTyWjMoygRjYp3Ku0q7x2YXNv68E7tlN3mBOct2LwFm7dg8yPYxkn-OHfOfij3_a_nuvNYAPilZwkXjLAfK9SHGg |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1007_s12530_025_09728_3 |
| Cites_doi | 10.4018/IJSSMET.2020040103 10.1016/j.matpr.2020.10.989 10.1007/s11042-019-08564-3 10.1007/s12161-019-01690-6 10.1007/978-981-15-4032-5_83 10.3390/plants10010031 10.1016/j.matpr.2020.12.139 10.1007/s11694-020-00554-6 10.1007/978-981-15-3992-3_40 10.1109/ICECA49313.2020.9297462 10.1111/jfpp.16320 10.14311/NNW.2022.32.019 10.1109/ICECA49313.2020.9297570 10.31838/jcr.07.12.02 10.1088/1742-6596/1881/3/032097 10.1016/j.micpro.2020.103090 10.1007/s41870-022-00860-w 10.3390/info10040129 10.36548/jiip.2020.1.005 10.1002/ima.22406 10.32604/cmc.2022.022809 10.1109/TPDS.2018.2877359 10.1109/Confluence51648.2021.9377186 10.1155/2020/8812019 10.1145/3385414 10.1016/j.compag.2020.105469 10.1109/CVPR42600.2020.00290 10.47760/ijcsmc.2021.v10i08.009 10.1109/CISCE50729.2020.00031 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2023.3342833 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) Online IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 6732 |
| ExternalDocumentID | 10_1109_JSEN_2023_3342833 10367831 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c294t-7def2caa60cc9f9873fbf8d7e7e09f8ab4a76e9a8adc7fc00ce0ec7db2368f423 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001280057500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:02:06 EDT 2025 Tue Nov 18 21:39:25 EST 2025 Sat Nov 29 06:39:50 EST 2025 Wed Aug 27 02:08:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-7def2caa60cc9f9873fbf8d7e7e09f8ab4a76e9a8adc7fc00ce0ec7db2368f423 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9994-3126 |
| PQID | 2932574468 |
| PQPubID | 75733 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2932574468 crossref_citationtrail_10_1109_JSEN_2023_3342833 crossref_primary_10_1109_JSEN_2023_3342833 ieee_primary_10367831 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Sanjeev (ref3) 2010 ref34 ref15 ref14 ref31 ref11 ref33 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Kumar (ref12) 2020 ref23 ref25 ref20 ref22 ref21 ref28 El-Ghamry (ref32) 2022 ref27 Reddy (ref30) 2022; 4 ref29 ref8 ref7 ref9 ref4 ref6 ref5 Wang (ref24) 2020; 21 Ganguli (ref26) 2022; 2022 |
| References_xml | – ident: ref9 doi: 10.4018/IJSSMET.2020040103 – ident: ref19 doi: 10.1016/j.matpr.2020.10.989 – ident: ref29 doi: 10.1007/s11042-019-08564-3 – ident: ref13 doi: 10.1007/s12161-019-01690-6 – ident: ref5 doi: 10.1007/978-981-15-4032-5_83 – year: 2022 ident: ref32 article-title: In a smart farm, the proposed wireless network IDS can be used to identify attacks by collecting Wi-Fi frames from sensors on framing and watering components and sending them to the suggested IDS publication-title: IEEE Sensors J. – ident: ref7 doi: 10.3390/plants10010031 – ident: ref27 doi: 10.1016/j.matpr.2020.12.139 – ident: ref11 doi: 10.1007/s11694-020-00554-6 – start-page: 477 year: 2020 ident: ref12 article-title: Quality grading of the fruits and vegetables using image processing techniques and machine learning: A review publication-title: Advances in Communication Systems and Networks doi: 10.1007/978-981-15-3992-3_40 – volume: 4 issue: 1 year: 2022 ident: ref30 article-title: Deep learning based fruit disease detection publication-title: Int. Res. J. Modernization Eng. Technol. Sci. – ident: ref4 doi: 10.1109/ICECA49313.2020.9297462 – ident: ref33 doi: 10.1111/jfpp.16320 – ident: ref15 doi: 10.14311/NNW.2022.32.019 – ident: ref10 doi: 10.1109/ICECA49313.2020.9297570 – ident: ref18 doi: 10.31838/jcr.07.12.02 – ident: ref2 doi: 10.1088/1742-6596/1881/3/032097 – ident: ref20 doi: 10.1016/j.micpro.2020.103090 – ident: ref34 doi: 10.1007/s41870-022-00860-w – year: 2010 ident: ref3 article-title: Image processing useful in agriculture – volume: 2022 start-page: 1 year: 2022 ident: ref26 article-title: Deep learning based dual channel banana grading system using convolution neural network publication-title: J. Food Qual. – ident: ref28 doi: 10.3390/info10040129 – ident: ref17 doi: 10.36548/jiip.2020.1.005 – ident: ref31 doi: 10.1002/ima.22406 – ident: ref14 doi: 10.32604/cmc.2022.022809 – ident: ref23 doi: 10.1109/TPDS.2018.2877359 – ident: ref6 doi: 10.1109/Confluence51648.2021.9377186 – ident: ref8 doi: 10.1155/2020/8812019 – ident: ref25 doi: 10.1145/3385414 – ident: ref22 doi: 10.1016/j.compag.2020.105469 – ident: ref1 doi: 10.1109/CVPR42600.2020.00290 – ident: ref21 doi: 10.47760/ijcsmc.2021.v10i08.009 – ident: ref16 doi: 10.1109/CISCE50729.2020.00031 – volume: 21 start-page: 393 issue: 2 year: 2020 ident: ref24 article-title: Big data service architecture: A survey publication-title: J. Internet Technol. |
| SSID | ssj0019757 |
| Score | 2.4040818 |
| Snippet | In the realm of agriculture, leveraging image processing has become pivotal for robust image analysis, especially in detecting fruit diseases. However,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6719 |
| SubjectTerms | Accuracy Backpropagation (BP) with adaptive momentum Convolutional neural networks Disease Diseases enhanced convolutional neural network (CNN) with spatial pyramid pooling (SPP) Feature extraction FIR filters Image analysis Image color analysis Image processing Image resolution Medical imaging optimum finite impulse response (FIR) Wiener filter Prediction models Production Radio frequency spatial bin stacked sparse denoising autoencoder (SSDAE) support vector machine (SVM) Support vector machines Surface layers |
| Title | Enhanced CNN for Fruit Disease Detection and Grading Classification Using SSDAE-SVM for Postharvest Fruits |
| URI | https://ieeexplore.ieee.org/document/10367831 https://www.proquest.com/docview/2932574468 |
| Volume | 24 |
| WOSCitedRecordID | wos001280057500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46BPXBy1ScTsmDT0Jn2nRN8jh2UUSLMB17K2kubCKddJ3gvzdJuzERBd_6kITSLzk5p-ec7wPgioQaaa6VCXJI5IVRO_U4S4UXGd-BchJFzHW5jh5IHNPxmD1VzequF0Yp5YrPVMs-uly-nImF_VVmTjg2ttV2TW8SEpXNWquUASOO1tOcYOSFmIyrFKaP2M39sB-3rE54C2NLMIa_XUJOVeWHKXb3y2D_n292APYqRxJ2SuQPwYbK6mB3jV6wDrYrhfPJ5xF47WcTl-yH3TiGxlOFg3wxLWCvTNDAnipcUVYGeSbhbe5K66GTzLTFRA4_6OoL4HDY6_S94ejRLWPVfic8t2wd5ZLzY_Ay6D9377xKZ8ETAQsLj0ilA8F5hIRgmlGCdaqpJIooxDTlaWhAU4xTLgXRAiGhkBJEpgGOqDb-2AmoZbNMnQKIVehLYUniJA1lkKaUCeMj-T72RUqCdgOg5YdPREVCbrUw3hIXjCCWWKwSi1VSYdUA16sp7yUDx1-Djy04awNLXBqguYQ3qQ7pPDGejjFYJh6mZ79MOwc7ZvWwrDlrglqRL9QF2BIfxXSeX7r99wVLONd7 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hQKI9AKWgbnn50FOlbJ3YG9tHtA8eXaJKS9HeIscP7SIUUDaL1H-P7YQVqKJSbznYTpQvMx5nZr4P4BujFltpjTvksDSiaa-IpChUlLrYgUuWpiJ0ud6OWZbx6VT8apvVQy-MMSYUn5muvwy5fP2glv5XmbNw4nyr75re6FGa4KZda5U0ECwQezobxhElbNomMWMsflxNhlnXK4V3CfEUY-TNNhR0Vf5yxmGHGe3857PtwnYbSqKzBvtPsGbKPfj4imBwD7ZajfPZn89wNyxnId2P-lmGXKyKRtVyXqNBk6JBA1OHsqwSyVKj8yoU16MgmunLiQKCKFQYoMlkcDaMJrfXYRmv9zuTlefraJZc7MPv0fCmfxG1SguRSgStI6aNTZSUKVZKWMEZsYXlmhlmsLBcFtTBZoTkUitmFcbKYKOYLhKScusisgNYLx9K8wUQMTTWytPEaU51UhRcKBclxTGJVcGSXgfwy4vPVUtD7tUw7vNwHMEi91jlHqu8xaoD31dTHhsOjn8N3vfgvBrY4NKBoxd489ZMF7mLdZzLcidi_vWdaaewdXFzPc7Hl9nPQ_jg7kSbCrQjWK-rpTmGTfVUzxfVSfgWnwGoP9rC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+CNN+for+Fruit+Disease+Detection+and+Grading+Classification+Using+SSDAE-SVM+for+Postharvest+Fruits&rft.jtitle=IEEE+sensors+journal&rft.au=Patel%2C+Himanshu+B.&rft.au=Patil%2C+Nitin+J.&rft.date=2024-03-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=24&rft.issue=5&rft.spage=6719&rft.epage=6732&rft_id=info:doi/10.1109%2FJSEN.2023.3342833&rft.externalDocID=10367831 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |