Privacy-Preserving Federated Learning With Resource-Adaptive Compression for Edge Devices

Federated learning (FL) has gained widespread attention as a distributed machine learning (ML) technique that offers data protection when training on local devices. Unlike conventional centralized training in traditional ML, FL incorporates privacy and security measures as it does not share raw data...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE internet of things journal Ročník 11; číslo 8; s. 13180 - 13198
Hlavní autoři: Hidayat, Muhammad Ayat, Nakamura, Yugo, Arakawa, Yutaka
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 15.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2327-4662, 2327-4662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Federated learning (FL) has gained widespread attention as a distributed machine learning (ML) technique that offers data protection when training on local devices. Unlike conventional centralized training in traditional ML, FL incorporates privacy and security measures as it does not share raw data between the client and server, thereby safeguarding potentially sensitive information. However, there are still vulnerabilities in the FL field, and commonly used approaches, such as encryption and blockchain technologies, often result in significant computational and communication costs, making them impractical for devices with restricted resources. To tackle this challenge, we present a privacy-preserving FL system specifically designed for resource-constrained devices, leveraging compressive sensing and differential privacy (DP) techniques. We implemented the weight-pruning-based compressive sensing method with an adaptive compression ratio based on resource availability. In addition, we employ DP to introduce noise to the gradient before sending it to a central server for aggregation, thereby protecting the gradient's privacy. Evaluation results demonstrate that our proposed method achieves slightly better accuracy when compared to state-of-the-art methods like DP-federated averaging, DP-FedOpt, and adaptive Gaussian clipping-DP (AGC-DP) for the MNIST, Fashion-MNIST, and Human Activity Recognition data sets. Furthermore, our approach achieves this higher accuracy with a lower total communication cost and training time than the current state-of-the-art methods. Moreover, we comprehensively evaluate our method's resilience against poisoning attacks, revealing its better resistance than existing state-of-the-art approaches.
AbstractList Federated learning (FL) has gained widespread attention as a distributed machine learning (ML) technique that offers data protection when training on local devices. Unlike conventional centralized training in traditional ML, FL incorporates privacy and security measures as it does not share raw data between the client and server, thereby safeguarding potentially sensitive information. However, there are still vulnerabilities in the FL field, and commonly used approaches, such as encryption and blockchain technologies, often result in significant computational and communication costs, making them impractical for devices with restricted resources. To tackle this challenge, we present a privacy-preserving FL system specifically designed for resource-constrained devices, leveraging compressive sensing and differential privacy (DP) techniques. We implemented the weight-pruning-based compressive sensing method with an adaptive compression ratio based on resource availability. In addition, we employ DP to introduce noise to the gradient before sending it to a central server for aggregation, thereby protecting the gradient’s privacy. Evaluation results demonstrate that our proposed method achieves slightly better accuracy when compared to state-of-the-art methods like DP-federated averaging, DP-FedOpt, and adaptive Gaussian clipping-DP (AGC-DP) for the MNIST, Fashion-MNIST, and Human Activity Recognition data sets. Furthermore, our approach achieves this higher accuracy with a lower total communication cost and training time than the current state-of-the-art methods. Moreover, we comprehensively evaluate our method’s resilience against poisoning attacks, revealing its better resistance than existing state-of-the-art approaches.
Author Hidayat, Muhammad Ayat
Nakamura, Yugo
Arakawa, Yutaka
Author_xml – sequence: 1
  givenname: Muhammad Ayat
  orcidid: 0000-0002-1841-7010
  surname: Hidayat
  fullname: Hidayat, Muhammad Ayat
  email: muhammad.971@s.kyushu-u.ac.jp
  organization: Department of Information Science and Technology, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
– sequence: 2
  givenname: Yugo
  orcidid: 0000-0002-8834-5323
  surname: Nakamura
  fullname: Nakamura, Yugo
  email: y-nakamura@ait.kyushu-u.ac.jp
  organization: Department of Information Science and Technology, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
– sequence: 3
  givenname: Yutaka
  orcidid: 0000-0002-7156-9160
  surname: Arakawa
  fullname: Arakawa, Yutaka
  email: arakawa@ait.kyushu-u.ac.jp
  organization: Department of Information Science and Technology, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
BookMark eNp9kEtrAjEQgEOxUGv9AYUeFnpem8du4h7FamsRlGIpPS3ZZGIjumuTuOC_7y56kB56mmGYbx7fLeqUVQkI3RM8IARnT2-zxWpAMWUDxhKRpvQKdSmjIk44p52L_Ab1vd9gjBssJRnvoq-ls7VUx3jpwIOrbbmOpqDByQA6moN0ZVv6tOE7egdfHZyCeKTlPtgaonG12zect1UZmcpFE72G6Blqq8DfoWsjtx7659hDH9PJavwazxcvs_FoHiuaJSEWmolCckOHaogVodzIojAJGCy41glPM84UI0BNKrk0Q2MyzTXgwghpikKzHno8zd276ucAPuSb5sqyWZkzzFIqGiOk6SKnLuUq7x2YfO_sTrpjTnDeSsxbiXkrMT9LbBjxh1E2yNA8G5y023_JhxNpAeBiExMpTQj7BYM5gsI
CODEN IITJAU
CitedBy_id crossref_primary_10_1007_s10722_024_02277_9
crossref_primary_10_3390_healthcare12242587
crossref_primary_10_1109_SR_2025_3548547
crossref_primary_10_1109_LSENS_2024_3422417
crossref_primary_10_1109_JIOT_2025_3533003
crossref_primary_10_1109_JIOT_2024_3443642
crossref_primary_10_1016_j_sigpro_2025_110206
crossref_primary_10_1109_ACCESS_2024_3418016
Cites_doi 10.3390/app12199901
10.1109/ICEIC57457.2023.10049966
10.3389/frcmn.2021.657653
10.3390/electronics12020260
10.1145/3564625.3567973
10.1109/JIOT.2023.3267112
10.1109/TNSE.2021.3100096
10.1109/TrustCom56396.2022.00094
10.1109/MIS.2020.3010335
10.1109/TNNLS.2019.2944481
10.1109/SP.2019.00029
10.1109/TrustCom/BigDataSE.2019.00057
10.1007/s00500-021-06496-5
10.1109/ICDE53745.2022.00062
10.1109/MIS.2021.3082561
10.1145/2976749.2978318
10.1109/JIOT.2022.3171767
10.1109/TKDE.2021.3124599
10.1109/JIOT.2022.3189361
10.1109/JIOT.2022.3201117
10.1016/j.future.2020.10.007
10.1109/TNNLS.2022.3166101
10.3390/e24111545
10.1109/CCCI52664.2021.9583220
10.1109/IJCNN55064.2022.9889795
10.1109/TIFS.2020.2988575
10.1109/TCOMM.2021.3124961
10.1109/JIOT.2021.3127886
10.1109/TNSE.2022.3185327
10.1109/OJCS.2021.3099108
10.1109/mdm58254.2023.00042
10.1109/TII.2022.3195896
10.1109/SCISISIS55246.2022.10001931
10.1109/ICTC55196.2022.9952435
10.1109/GLOBECOM48099.2022.10001481
10.1109/TC.2023.3239542
10.1109/DSA52907.2021.00081
10.1145/3589462.3589502
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2023.3347552
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 13198
ExternalDocumentID 10_1109_JIOT_2023_3347552
10375241
Genre orig-research
GrantInformation_xml – fundername: Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT)
– fundername: Japan Science and Technology Agency (JST), PRESTO
  grantid: JPMJPR21P7
– fundername: Japan Society for the Promotion of Science (JSPS) KAKENHI
  grantid: JP19KT0020
  funderid: 10.13039/501100001691
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-7d37ba6f28c80c126fabbf4ef076dd465963c31e2f5a6af8ff9d6de0bf7afbbd3
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001203466500130&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Mon Nov 03 04:24:43 EST 2025
Tue Nov 18 19:37:54 EST 2025
Sat Nov 29 01:43:58 EST 2025
Wed Aug 27 02:09:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-7d37ba6f28c80c126fabbf4ef076dd465963c31e2f5a6af8ff9d6de0bf7afbbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8834-5323
0000-0002-1841-7010
0000-0002-7156-9160
PQID 3035274751
PQPubID 2040421
PageCount 19
ParticipantIDs ieee_primary_10375241
proquest_journals_3035274751
crossref_primary_10_1109_JIOT_2023_3347552
crossref_citationtrail_10_1109_JIOT_2023_3347552
PublicationCentury 2000
PublicationDate 2024-04-15
PublicationDateYYYYMMDD 2024-04-15
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
Zari (ref17) 2021
ref30
ref33
ref10
ref32
ref2
ref1
ref39
ref16
ref38
Sikandar (ref8) 2023; 12
ref19
ref18
Li (ref31) 2021; 2021
Hu (ref23) 2021; 2
ref24
ref26
ref20
ref42
ref41
ref22
Mothukuri (ref11) 2021; 115
ref21
ref28
ref27
ref29
ref7
Kurniawan (ref9) 2022; 24
ref4
ref3
ref6
ref5
Reddi (ref40) 2020
Wang (ref25)
References_xml – ident: ref1
  doi: 10.3390/app12199901
– ident: ref4
  doi: 10.1109/ICEIC57457.2023.10049966
– ident: ref29
  doi: 10.3389/frcmn.2021.657653
– volume: 12
  start-page: 260
  issue: 2
  year: 2023
  ident: ref8
  article-title: A detailed survey on federated learning attacks and defenses
  publication-title: Electronics
  doi: 10.3390/electronics12020260
– ident: ref26
  doi: 10.1145/3564625.3567973
– ident: ref28
  doi: 10.1109/JIOT.2023.3267112
– ident: ref35
  doi: 10.1109/TNSE.2021.3100096
– ident: ref24
  doi: 10.1109/TrustCom56396.2022.00094
– ident: ref37
  doi: 10.1109/MIS.2020.3010335
– ident: ref14
  doi: 10.1109/TNNLS.2019.2944481
– ident: ref16
  doi: 10.1109/SP.2019.00029
– year: 2020
  ident: ref40
  article-title: Adaptive federated optimization
  publication-title: arXiv:2003.00295
– ident: ref18
  doi: 10.1109/TrustCom/BigDataSE.2019.00057
– ident: ref10
  doi: 10.1007/s00500-021-06496-5
– ident: ref32
  doi: 10.1109/ICDE53745.2022.00062
– ident: ref7
  doi: 10.1109/MIS.2021.3082561
– year: 2021
  ident: ref17
  article-title: Efficient passive membership inference attack in federated learning
  publication-title: arXiv:2111.00430
– ident: ref22
  doi: 10.1145/2976749.2978318
– ident: ref36
  doi: 10.1109/JIOT.2022.3171767
– ident: ref3
  doi: 10.1109/TKDE.2021.3124599
– ident: ref41
  doi: 10.1109/JIOT.2022.3189361
– ident: ref21
  doi: 10.1109/JIOT.2022.3201117
– volume: 2021
  start-page: 1
  year: 2021
  ident: ref31
  article-title: An adaptive communication-efficient federated learning to resist gradient-based reconstruction attacks
  publication-title: Security Commun. Netw.
– volume: 115
  start-page: 619
  year: 2021
  ident: ref11
  article-title: A survey on security and privacy of federated learning
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.10.007
– ident: ref33
  doi: 10.1109/TNNLS.2022.3166101
– volume: 24
  start-page: 1545
  issue: 11
  year: 2022
  ident: ref9
  article-title: Homomorphic encryption-based federated privacy preservation for deep active learning
  publication-title: Entropy
  doi: 10.3390/e24111545
– ident: ref39
  doi: 10.1109/CCCI52664.2021.9583220
– ident: ref38
  doi: 10.1109/IJCNN55064.2022.9889795
– ident: ref12
  doi: 10.1109/TIFS.2020.2988575
– ident: ref15
  doi: 10.1109/TCOMM.2021.3124961
– ident: ref30
  doi: 10.1109/JIOT.2021.3127886
– ident: ref20
  doi: 10.1109/TNSE.2022.3185327
– volume: 2
  start-page: 276
  year: 2021
  ident: ref23
  article-title: Concentrated differentially private federated learning with performance analysis
  publication-title: IEEE Open J. Comput. Soc.
  doi: 10.1109/OJCS.2021.3099108
– start-page: 22802
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref25
  article-title: Communication-efficient adaptive federated learning
– ident: ref13
  doi: 10.1109/mdm58254.2023.00042
– ident: ref2
  doi: 10.1109/TII.2022.3195896
– ident: ref5
  doi: 10.1109/SCISISIS55246.2022.10001931
– ident: ref6
  doi: 10.1109/ICTC55196.2022.9952435
– ident: ref27
  doi: 10.1109/GLOBECOM48099.2022.10001481
– ident: ref34
  doi: 10.1109/TC.2023.3239542
– ident: ref42
  doi: 10.1109/DSA52907.2021.00081
– ident: ref19
  doi: 10.1145/3589462.3589502
SSID ssj0001105196
Score 2.3595977
Snippet Federated learning (FL) has gained widespread attention as a distributed machine learning (ML) technique that offers data protection when training on local...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13180
SubjectTerms Adaptation models
Blockchain
Compression ratio
Compressive sensing
Computational modeling
Cryptography
Devices
Differential privacy
Federated learning
federated learning (FL)
Human activity recognition
Machine learning
Privacy
privacy-preserving
resource-adaptive
Security
Servers
State of the art
weight-pruning
Title Privacy-Preserving Federated Learning With Resource-Adaptive Compression for Edge Devices
URI https://ieeexplore.ieee.org/document/10375241
https://www.proquest.com/docview/3035274751
Volume 11
WOSCitedRecordID wos001203466500130&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5aPHixLhWrVXLwJEw7SyaZORZtUZHag0s9DVlrQUapbcF_b14mdUEUvA1MXhjeN3n58vIWhI5TJjKacB7omJiAWNIbCCBy3GIto9gKuQy5uys2GGSjUT70yeouF0Zr7YLPdBse3V2-epZzcJV1IKctjSFNfZUxWiVrfTpUImAj1N9cRmHeuby4vmlDe_B2khCWpvG3vcc1U_lhgd220q__84M20Ybnj7hbAb6FVnS5jerL3gzYL9Ud9DCcThZcvgUQYwH2oBzjPhSOsNxSYV9VdYzvJ7NHvHThB13FX8D8YZivCpAtsWW1uKfGGp9pZ1Ua6Lbfuzk9D3wbhUDGOZkFTCVMcGriTGah1T81XAhDtAkZVYrQ1K5BmUQ6Nimn3GTG5IoqHQrDuBFCJbuoVj6Xeg9hand8KQk1WRYRpgy8F4ITnWlhmZhponCp4EL6GuPQ6uKpcGeNMC8AkwIwKTwmTXTyIfJSFdj4a3ADQPgysNJ_E7WWMBZ-Db4WCZR6taelNNr_RewArdvZXSBOlLZQbTad60O0Jhezyev0yP1e78xs0JE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA6igl7cxXHNwZPQsUuStkfRGUYdRw_jdipZxwGpwyyC_968NOOCKHgrNK8t-fpevry8BaFDmoqMJZwHOiYmIJb0BgKIHLdYyyi2Qi5D7q6ddjrZw0N-45PVXS6M1toFn-k6XLqzfPUiJ-AqO4acNhpDmvocJSQOq3StT5dKBHyE-bPLKMyPL86vu3VoEF5PEpJSGn9bfVw7lR822C0szeV_ftIKWvIMEp9UkK-iGV2uoeVpdwbslXUdPd4M-69cvgUQZQEWoezhJpSOsOxSYV9XtYfv--MnPHXiByeKD8AAYnheFSJbYstrcUP1ND7Tzq5soNtmo3vaCnwjhUDGORkHqUpSwZmJM5mFFgFmuBCGaBOmTCnCqNVCmUQ6NpQzbjJjcsWUDoVJuRFCJZtotnwp9RbCzK75UhJmsiwiqTJwXwhOdKaF5WKmhsLpBBfSVxmHZhfPhdtthHkBmBSASeExqaGjD5FBVWLjr8EbAMKXgdX819DuFMbCa-GoSKDYq90v0Wj7F7EDtNDqXrWL9nnncgct2je5sJyI7qLZ8XCi99C8fB33R8N996u9A8pk09g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy-Preserving+Federated+Learning+With+Resource-Adaptive+Compression+for+Edge+Devices&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Muhammad+Ayat+Hidayat&rft.au=Nakamura%2C+Yugo&rft.au=Arakawa%2C+Yutaka&rft.date=2024-04-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=11&rft.issue=8&rft.spage=13180&rft_id=info:doi/10.1109%2FJIOT.2023.3347552&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon