Attack Classification of Imbalanced Intrusion Data for IoT network Using Ensemble Learning-based Deep Neural Network

With the increase in popularity of Internet of Things (IoT) and rise in interconnected devices, the need to foster effective security mechanism to handle vulnerabilities and risks in IoT networks has become evident. Security mechanisms such as Intrusion Detection System (IDS) are designed and deploy...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE internet of things journal Ročník 10; číslo 13; s. 1
Hlavní autoři: Thakkar, Ankit, Lohiya, Ritika
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2327-4662, 2327-4662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the increase in popularity of Internet of Things (IoT) and rise in interconnected devices, the need to foster effective security mechanism to handle vulnerabilities and risks in IoT networks has become evident. Security mechanisms such as Intrusion Detection System (IDS) are designed and deployed in IoT network environment to ensure security and prevent unauthorized access to system and resources. Moreover, there have been efforts to design IDS using various Deep Learning (DL) techniques, as these techniques possess intriguing characteristic of representing data with high abstraction. However, intrusion detection datasets used in literature possess imbalance class distribution, which is one of the challenging issue in developing coherent and potent intrusion detection and classification system. In this paper, we aim to address class imbalance problem using ensemble learning approach, namely, Bagging classifier, that uses Deep Neural Network (DNN) as base estimator. Here, in the proposed approach, the training process of DNN is influenced by including class weights that advocates to create balanced training subsets for DNN. The desirability and merit of the proposed approach can be considered as two-fold as it aims to achieve generalization along with addressing the class imbalance problem in intrusion detection datasets. The performance of the proposed approach is evaluated using four intrusion detection datasets, namely, NSL-KDD, UNSW_NB-15, CIC-IDS-2017, and BoT-IoT. Result analysis of the proposed approach is illustrated using various evaluation metrics, namely, accuracy, precision, recall, f-score, and False Positive Rate (FPR). Moreover, results of the proposed approach are also statistically tested using Wilcoxon signed-rank test.
AbstractList With the increase in popularity of Internet of Things (IoT) and rise in interconnected devices, the need to foster effective security mechanism to handle vulnerabilities and risks in IoT networks has become evident. Security mechanisms such as Intrusion Detection System (IDS) are designed and deployed in IoT network environment to ensure security and prevent unauthorized access to system and resources. Moreover, there have been efforts to design IDS using various Deep Learning (DL) techniques, as these techniques possess intriguing characteristic of representing data with high abstraction. However, intrusion detection datasets used in literature possess imbalance class distribution, which is one of the challenging issue in developing coherent and potent intrusion detection and classification system. In this paper, we aim to address class imbalance problem using ensemble learning approach, namely, Bagging classifier, that uses Deep Neural Network (DNN) as base estimator. Here, in the proposed approach, the training process of DNN is influenced by including class weights that advocates to create balanced training subsets for DNN. The desirability and merit of the proposed approach can be considered as two-fold as it aims to achieve generalization along with addressing the class imbalance problem in intrusion detection datasets. The performance of the proposed approach is evaluated using four intrusion detection datasets, namely, NSL-KDD, UNSW_NB-15, CIC-IDS-2017, and BoT-IoT. Result analysis of the proposed approach is illustrated using various evaluation metrics, namely, accuracy, precision, recall, f-score, and False Positive Rate (FPR). Moreover, results of the proposed approach are also statistically tested using Wilcoxon signed-rank test.
With the increase in popularity of Internet of Things (IoT) and the rise in interconnected devices, the need to foster effective security mechanism to handle vulnerabilities and risks in IoT networks has become evident. Security mechanisms, such as intrusion detection system (IDS), are designed and deployed in IoT network environment to ensure security and prevent unauthorized access to system and resources. Moreover, there have been efforts to design IDS using various deep learning (DL) techniques, as these techniques possess the intriguing characteristic of representing data with high abstraction. However, the intrusion detection data sets used in literature possess imbalance class distribution, which is one of the challenging issues in developing coherent and potent intrusion detection and classification system. In this article, we aim to address class imbalance problem using ensemble learning approach, namely, the Bagging classifier, that uses a deep neural network (DNN) as a base estimator. Here, in the proposed approach, the training process of DNN is influenced by, including class weights that advocates to create balanced training subsets for DNN. The desirability and merit of the proposed approach can be considered as twofold as it aims to achieve generalization along with addressing the class imbalance problem in intrusion detection data sets. The performance of the proposed approach is evaluated using four intrusion detection data sets, namely, NSL-KDD, UNSW_NB-15, CIC-IDS-2017, and BoT-IoT. The result analysis of the proposed approach is illustrated using various evaluation metrics, namely, accuracy, precision, recall, [Formula Omitted]-score, and false positive rate (FPR). Moreover, the results of the proposed approach are also statistically tested using Wilcoxon signed-rank test.
Author Thakkar, Ankit
Lohiya, Ritika
Author_xml – sequence: 1
  givenname: Ankit
  orcidid: 0000-0001-8328-6101
  surname: Thakkar
  fullname: Thakkar, Ankit
  organization: Computer Science and Engineering Department, Institute of Technology, Nirma University, Ahmedabad, Gujarat, India
– sequence: 2
  givenname: Ritika
  orcidid: 0000-0003-1794-8300
  surname: Lohiya
  fullname: Lohiya, Ritika
  organization: Computer Science and Engineering Department, Institute of Technology, Nirma University, Ahmedabad, Gujarat, India
BookMark eNp9kEtLAzEQgIMoqNUfIHgIeN6aTPZ5lPpaKfbSnpfZ3YmsbpOapIj_3tR6EA-e5sF8M8N3yg6NNcTYhRRTKUV1_VQvllMQoKYK0rSU4oCdgIIiSfMcDn_lx-zc-1chRMQyWeUnLNyEgN0bn43o_aCHDsNgDbea1-sWRzQd9bw2wW39rn-LAbm2jtd2yQ2FD-ve-MoP5oXfGU_rdiQ-J3QmdpIWfYRviTb8mbYOxxi-iTN2pHH0dP4TJ2x1f7ecPSbzxUM9u5knHVRpSIqyVwVWPUIbfxVt1eYxpV7mBekiFkWrMtkVugddgkANUFKqMAeSWd-CmrCr_d6Ns-9b8qF5tVtn4skGSigrVWV5Fqfkfqpz1ntHutm4YY3us5Gi2fltdn6bnd_mx29kij9MN4RvdcHhMP5LXu7JgYh-XRJpCqJUX2Iuiug
CODEN IITJAU
CitedBy_id crossref_primary_10_3390_electronics13091711
crossref_primary_10_1109_ACCESS_2025_3582391
crossref_primary_10_1109_JIOT_2024_3406386
crossref_primary_10_1109_TCYB_2024_3393020
crossref_primary_10_1016_j_array_2025_100501
crossref_primary_10_1007_s10586_024_05065_3
crossref_primary_10_1007_s11831_023_09943_8
crossref_primary_10_3390_sym17030314
crossref_primary_10_1007_s10922_025_09926_z
crossref_primary_10_32604_cmc_2024_051769
crossref_primary_10_32604_cmc_2024_054836
crossref_primary_10_3390_math12070948
crossref_primary_10_1016_j_jii_2025_100777
crossref_primary_10_1109_ACCESS_2025_3538319
crossref_primary_10_32604_cmc_2025_060357
crossref_primary_10_1016_j_jfranklin_2024_107440
crossref_primary_10_1109_COMST_2024_3382470
crossref_primary_10_1007_s10207_024_00896_y
crossref_primary_10_1631_FITEE_2400556
crossref_primary_10_35377_saucis___1663435
crossref_primary_10_1016_j_cose_2024_104209
crossref_primary_10_1038_s41598_025_16553_w
crossref_primary_10_3390_fi17010030
crossref_primary_10_1109_JIOT_2023_3314667
crossref_primary_10_1007_s11277_024_11260_7
crossref_primary_10_1016_j_adhoc_2024_103540
crossref_primary_10_1016_j_future_2024_107630
crossref_primary_10_1016_j_inffus_2025_103473
crossref_primary_10_3390_bdcc8090116
crossref_primary_10_3390_s24155048
crossref_primary_10_3390_sym16091121
crossref_primary_10_1016_j_ins_2024_121103
crossref_primary_10_1109_ACCESS_2025_3582445
crossref_primary_10_3390_electronics13153014
crossref_primary_10_1038_s41598_025_05217_4
crossref_primary_10_1016_j_eswa_2024_126033
crossref_primary_10_1016_j_apacoust_2025_110627
crossref_primary_10_1016_j_sciaf_2025_e02809
crossref_primary_10_1109_ACCESS_2025_3538170
crossref_primary_10_3390_app15147984
crossref_primary_10_7717_peerj_cs_2745
crossref_primary_10_1007_s10207_025_00983_8
crossref_primary_10_1109_ACCESS_2024_3405628
crossref_primary_10_1109_ACCESS_2024_3465045
crossref_primary_10_1109_ACCESS_2025_3551750
crossref_primary_10_1002_itl2_531
crossref_primary_10_1038_s41598_025_97378_5
crossref_primary_10_1109_JIOT_2024_3397364
crossref_primary_10_1007_s10586_025_05415_9
crossref_primary_10_1007_s10586_024_04404_8
crossref_primary_10_1007_s11227_024_06475_1
crossref_primary_10_1016_j_iot_2023_100936
crossref_primary_10_1002_spy2_497
crossref_primary_10_1109_TCE_2023_3319439
crossref_primary_10_1038_s41598_024_56126_x
crossref_primary_10_1002_cpe_8088
crossref_primary_10_1109_JIOT_2024_3387294
crossref_primary_10_1007_s10586_024_04964_9
crossref_primary_10_1016_j_asoc_2025_113420
crossref_primary_10_1016_j_asoc_2024_111378
crossref_primary_10_1016_j_vehcom_2025_100970
crossref_primary_10_12720_jait_16_5_632_647
crossref_primary_10_3390_s25154845
crossref_primary_10_3390_app13095427
crossref_primary_10_3390_s23167215
crossref_primary_10_1007_s10586_025_05374_1
crossref_primary_10_1109_ACCESS_2024_3473289
crossref_primary_10_1016_j_iot_2024_101336
crossref_primary_10_1016_j_neucom_2024_128492
crossref_primary_10_1049_ntw2_12128
Cites_doi 10.1109/ICCCN.2018.8487460
10.1109/ICCSN.2016.7586590
10.1007/s11831-020-09496-0
10.1007/s11063-013-9286-9
10.1007/s10462-021-10037-9
10.1109/ISCC.2017.8024620
10.1109/LSENS.2018.2879990
10.1007/978-981-33-6173-7_7
10.1002/int.22590
10.1613/jair.953
10.1016/j.swevo.2019.100631
10.1109/ACCESS.2020.3045078
10.1186/s40537-020-00390-x
10.1613/jair.1.11192
10.1002/sam.10061
10.3390/sym13010004
10.1002/ep.13018
10.1145/3199478.3199489
10.1186/s40537-018-0151-6
10.1016/j.ins.2019.07.070
10.1007/s12652-020-02167-9
10.1016/j.procs.2020.04.085
10.1109/JIOT.2020.3048439
10.1109/TSMCC.2011.2161285
10.1007/BF00058655
10.1016/j.procs.2020.03.330
10.1016/j.future.2019.05.041
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2023.3244810
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 1
ExternalDocumentID 10_1109_JIOT_2023_3244810
10044208
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-78d37a9da2b1960b9b6a2bed167ef7b6a7b351c7fd2f820af228e43a62e15db23
IEDL.DBID RIE
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001018925700056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Mon Nov 24 18:14:29 EST 2025
Sat Nov 29 06:17:14 EST 2025
Tue Nov 18 22:41:47 EST 2025
Wed Aug 27 02:18:23 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 13
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-78d37a9da2b1960b9b6a2bed167ef7b6a7b351c7fd2f820af228e43a62e15db23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8328-6101
0000-0003-1794-8300
PQID 2828939565
PQPubID 2040421
PageCount 1
ParticipantIDs crossref_primary_10_1109_JIOT_2023_3244810
proquest_journals_2828939565
ieee_primary_10044208
crossref_citationtrail_10_1109_JIOT_2023_3244810
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
koroniotis (ref6) 2019; 100
ref31
ref11
ref10
ref32
ref2
ref17
ref16
ref19
ghojogh (ref26) 2019
goodfellow (ref7) 2016; 1
ref24
ref23
ref25
ref20
ref22
ref21
ref28
kyriakides (ref30) 2019
ref27
ref29
ref8
aminanto (ref1) 2016
ref9
ref4
ref3
ref5
hodo (ref18) 2017
References_xml – ident: ref19
  doi: 10.1109/ICCCN.2018.8487460
– ident: ref8
  doi: 10.1109/ICCSN.2016.7586590
– ident: ref10
  doi: 10.1007/s11831-020-09496-0
– ident: ref15
  doi: 10.1007/s11063-013-9286-9
– ident: ref31
  doi: 10.1007/s10462-021-10037-9
– ident: ref20
  doi: 10.1109/ISCC.2017.8024620
– ident: ref21
  doi: 10.1109/LSENS.2018.2879990
– ident: ref27
  doi: 10.1007/978-981-33-6173-7_7
– volume: 1
  year: 2016
  ident: ref7
  publication-title: Deep Learning
– ident: ref4
  doi: 10.1002/int.22590
– year: 2019
  ident: ref30
  publication-title: Hands-On Ensemble Learning with Python Build highly optimized ensemble machine learning models using scikit-learn and Keras
– ident: ref32
  doi: 10.1613/jair.953
– ident: ref3
  doi: 10.1016/j.swevo.2019.100631
– ident: ref9
  doi: 10.1109/ACCESS.2020.3045078
– year: 2017
  ident: ref18
  article-title: Shallow and deep networks intrusion detection system: A taxonomy and survey
  publication-title: arXiv 1701 02145
– ident: ref14
  doi: 10.1186/s40537-020-00390-x
– year: 2019
  ident: ref26
  article-title: The theory behind overfitting, cross validation, regularization, bagging, and boosting: Tutorial
  publication-title: arXiv 1905 12787
– ident: ref12
  doi: 10.1613/jair.1.11192
– ident: ref24
  doi: 10.1002/sam.10061
– start-page: 1
  year: 2016
  ident: ref1
  article-title: Deep learning in intrusion detection system: An overview
  publication-title: Proc Int Res Conf Eng Technol (IRCET)
– ident: ref29
  doi: 10.3390/sym13010004
– ident: ref25
  doi: 10.1002/ep.13018
– ident: ref22
  doi: 10.1145/3199478.3199489
– ident: ref11
  doi: 10.1186/s40537-018-0151-6
– ident: ref13
  doi: 10.1016/j.ins.2019.07.070
– ident: ref2
  doi: 10.1007/s12652-020-02167-9
– ident: ref16
  doi: 10.1016/j.procs.2020.04.085
– ident: ref5
  doi: 10.1109/JIOT.2020.3048439
– ident: ref17
  doi: 10.1109/TSMCC.2011.2161285
– ident: ref23
  doi: 10.1007/BF00058655
– ident: ref28
  doi: 10.1016/j.procs.2020.03.330
– volume: 100
  start-page: 779
  year: 2019
  ident: ref6
  article-title: Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.05.041
SSID ssj0001105196
Score 2.5607166
Snippet With the increase in popularity of Internet of Things (IoT) and rise in interconnected devices, the need to foster effective security mechanism to handle...
With the increase in popularity of Internet of Things (IoT) and the rise in interconnected devices, the need to foster effective security mechanism to handle...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Bagging
Class Imbalance
Class Weights
Classification
Classification algorithms
Cybersecurity
Datasets
Deep learning
Deep Neural Network
Ensemble learning
Internet of Things
Intrusion detection
Intrusion Detection System
Intrusion detection systems
Machine learning
Neural networks
Rank tests
Training
Title Attack Classification of Imbalanced Intrusion Data for IoT network Using Ensemble Learning-based Deep Neural Network
URI https://ieeexplore.ieee.org/document/10044208
https://www.proquest.com/docview/2828939565
Volume 10
WOSCitedRecordID wos001018925700056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qHrz4FldXycGT0LVNH2mOi6tYkdXDKnsraTMVcbcrbvX3O5NmVRAFb2lJSsmXxzfJfDOMnQQ6KUGGlUe6SC9SReIVESQe2iIVpEYrbZ1oHm7kcJiOx-rOidWtFgYArPMZ9Kho7_LNrHyjo7IzG91MkLR3WUrZirW-DlQCYiOJu7kMfHV2nd2OepQevIesIUpJJPtt77HJVH6swHZbudz45w9tsnXHH3m_BXyLLUG9zTYWuRm4m6o7rOk3jS6fuU16Se5AFgE-q3g2LcidsQTDs5okF_R-oBvNkb_ybDbidesazq07Ab-o5zAtJsBdKNZHj3Y-wwcAL5xie-DvDNsWu-z-8mJ0fuW5DAteKVTUeDI1odTKaFFg1_kFQoVFMEEioZL4IIswDkpZGVEhVdCVEClEoU4EBLEpRLjHVupZDfuMx6kAjeRXGbQZE1wWcGgoZBshAC4Z4HeYv-j7vHThxykLxiS3ZoivcoIrJ7hyB1eHnX42eWljb_xVeZfw-VaxhabDuguEczc957m1M0M0DeODX5odsjX6euuY22UrCAccsdXyvXmavx7bkfcBj4fXxw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6igl58i-szB09C1zZ95iiuYnVdPayyt5I2UxF3u4tb_f3OpFkVRMFbWhJa8uXxTTLfDGPHnooKiP3SIV2kE8g8cvIAIgdtkRISraQyTjSP3bjXSwYDeW_F6kYLAwDG-QzaVDR3-XpcvNFR2amJbiZI2rsQYsFr5FpfRyoe8ZHI3l16rjy9Tu_6bUoQ3kbeECQkk_22-5h0Kj_WYLOxXK7-85fW2IplkPysgXydzUG1wVZn2Rm4naybrD6ra1W8cJP2khyCDAZ8XPJ0lJNDYwGapxWJLuh9R9WKI4Pl6bjPq8Y5nBuHAn5RTWGUD4HbYKxPDu19mncAJpyie-Dv9JoWW-zh8qJ_fuXYHAtOIWRQO3Gi_VhJrUSOXefmCBYWQXtRDGWMD3Huh14Rl1qUSBZUKUQCga8iAV6oc-Fvs_lqXMEO42EiQCH9lRqtxggXBhwcEvmGD4CLBrgt5s76PitsAHLKgzHMjCHiyozgygiuzMLVYiefTSZN9I2_Km8RPt8qNtC02P4M4cxO0GlmLE0fjcNw95dmR2zpqn_bzbpp72aPLdOXGjfdfTaP0MABWyze6-fp66EZhR_uXtsO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attack+Classification+of+Imbalanced+Intrusion+Data+for+IoT+Network+Using+Ensemble-Learning-Based+Deep+Neural+Network&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Thakkar%2C+Ankit&rft.au=Lohiya%2C+Ritika&rft.date=2023-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=10&rft.issue=13&rft.spage=11888&rft_id=info:doi/10.1109%2FJIOT.2023.3244810&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon