Generalized Optimal EEG Channels Selection for Motor Imagery Brain-Computer Interface

Brain-computer interfaces (BCI) enable people to communicate with external instruments through brain activity recorded by electroencephalography (EEG). BCI based on motor imagery (MI) can distinguish activation of specific brain regions by decoding EEG signals and then applying them to different sit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal Jg. 23; H. 20; S. 25356 - 25366
Hauptverfasser: Lee, Hsiang-Chen, Lee, Ching-Hung
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 15.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1530-437X, 1558-1748
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Brain-computer interfaces (BCI) enable people to communicate with external instruments through brain activity recorded by electroencephalography (EEG). BCI based on motor imagery (MI) can distinguish activation of specific brain regions by decoding EEG signals and then applying them to different situations. Because the activation regions of the brain are specific, using all EEG channels for classification is redundant and may lead to feature confusion and inconvenience for users when applying EEG. Current EEG channel selection methods focus primarily on a single subject and require the data from the subject to generate the chosen channel, which is inconvenient on the application side to determine suitable channels for new subjects. Therefore, this study introduces a novel method for generalized EEG channel selection. Two datasets are used: the BCI competition IV 2a dataset for generating generalized EEG channels and the OpenBMI dataset for validation by numerous subjects. First, the signals from each channel are fed into EEG-Net for classification and ranked by loss to generate optimal EEG channels. Then, the methods of ranking and non-dominated sorting genetic algorithm (NSGA)-II are used to find different combinations of optimal potential differences. Finally, the generalized EEG channels are generated and validated by EEG-Net again. The validation results show that 88.5% of the subjects can be well-classified in one session, including MI-illiteracy, defined by the dataset. The average accuracy is 77.7% and 79.26% in Sessions 1 and 2, using the average channel number around 5, instead of channels from the motor cortex region or all placed EEG channels.
AbstractList Brain–computer interfaces (BCI) enable people to communicate with external instruments through brain activity recorded by electroencephalography (EEG). BCI based on motor imagery (MI) can distinguish activation of specific brain regions by decoding EEG signals and then applying them to different situations. Because the activation regions of the brain are specific, using all EEG channels for classification is redundant and may lead to feature confusion and inconvenience for users when applying EEG. Current EEG channel selection methods focus primarily on a single subject and require the data from the subject to generate the chosen channel, which is inconvenient on the application side to determine suitable channels for new subjects. Therefore, this study introduces a novel method for generalized EEG channel selection. Two datasets are used: the BCI competition IV 2a dataset for generating generalized EEG channels and the OpenBMI dataset for validation by numerous subjects. First, the signals from each channel are fed into EEG-Net for classification and ranked by loss to generate optimal EEG channels. Then, the methods of ranking and non-dominated sorting genetic algorithm (NSGA)-II are used to find different combinations of optimal potential differences. Finally, the generalized EEG channels are generated and validated by EEG-Net again. The validation results show that 88.5% of the subjects can be well-classified in one session, including MI-illiteracy, defined by the dataset. The average accuracy is 77.7% and 79.26% in Sessions 1 and 2, using the average channel number around 5, instead of channels from the motor cortex region or all placed EEG channels.
Author Lee, Ching-Hung
Lee, Hsiang-Chen
Author_xml – sequence: 1
  givenname: Hsiang-Chen
  surname: Lee
  fullname: Lee, Hsiang-Chen
  organization: Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
– sequence: 2
  givenname: Ching-Hung
  orcidid: 0000-0003-3081-362X
  surname: Lee
  fullname: Lee, Ching-Hung
  email: chl@nycu.edu.tw
  organization: Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
BookMark eNp9kDFPwzAQhS1UJNrCD0BiiMSc4rOTOBkhCqWo0KFUYoss5wKpUjs47lB-PY7aATGwvDud7t3TfRMy0kYjIddAZwA0u3teF68zRhmfcQ6c8eSMjCGO0xBElI6GntMw4uL9gkz6fkspZCIWY7KZo0Yr2-Ybq2DVuWYn26Ao5kH-KbXGtg_W2KJyjdFBbWzwYpzXxU5-oD0ED1Y2OszNrts79GPttZYKL8l5Ldser051SjaPxVv-FC5X80V-vwwVyyIXClGlEjIKCVSUYlpFinGMKeUYcRVVLGKQcagTxpKa0QQzwSRHKVSVpKIGPiW3x7udNV977F25NXurfWTJUpHGVGRJ5rfguKWs6XuLddlZ_6c9lEDLgV450CsHeuWJnveIPx7VODlgcP7n9l_nzdHZIOKvJBYDMMp_AEQ0fW8
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123239
crossref_primary_10_3390_s25010120
crossref_primary_10_1080_09540091_2024_2426812
crossref_primary_10_1109_ACCESS_2024_3473810
Cites_doi 10.1093/gigascience/gix034
10.3390/bioengineering9040141
10.1109/TBME.2011.2131142
10.1016/S1388-2457(02)00057-3
10.1007/s12559-015-9379-z
10.1016/j.neucom.2016.05.035
10.1038/s41598-020-62712-6
10.1109/IEMBS.2009.5333585
10.1109/TBME.2008.923152
10.3390/s120201211
10.1371/journal.pone.0000637
10.1038/s41598-022-15252-0
10.1016/0013-4694(68)90080-1
10.1109/JAS.2020.1003336
10.1109/MSP.2008.4408441
10.3389/fnins.2022.1045851
10.1088/1741-2552/ac115d
10.1093/acprof:oso/9780195388855.001.0001
10.1109/JPROC.2012.2184829
10.1088/1741-2552/aace8c
10.3389/fnins.2012.00055
10.3390/bioengineering9120726
10.1109/ACCESS.2020.3009665
10.1093/gigascience/giz002
10.1109/TNSRE.2006.875642
10.1109/TBME.2004.827827
10.3389/fnbot.2017.00060
10.1109/IoT-SIU.2018.8519891
10.1109/4235.996017
10.1016/B978-0-12-800945-1.00023-9
10.1109/IJCNN.2008.4634130
10.1016/j.bspc.2021.102621
10.1145/3397850
10.1016/j.bspc.2021.102983
10.1109/BMEI.2011.6098380
10.1109/TNSRE.2020.3048106
10.1007/s10462-019-09694-8
10.1109/MC.2012.107
10.3390/bioengineering9070323
10.1109/TNSRE.2020.3020975
10.1007/BF00412364
10.1088/1741-2552/ac0583
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2023.3313236
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 25366
ExternalDocumentID 10_1109_JSEN_2023_3313236
10251120
Genre orig-research
GrantInformation_xml – fundername: National Science and Technology Council; National Science and Technology Council of Taiwan
  grantid: NSTC- 11-2221-E-A49-168-MY3; 110-2221-E-A49-121-MY2; 110-2221-E-224-026; 110-2634-F-007-027
  funderid: 10.13039/100020595
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-77d8a190161d00e8d4c23e5003e43c4d2421931f6226f206e972a3ea7cd687f13
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001098067300144&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:13:21 EDT 2025
Sat Nov 29 06:39:42 EST 2025
Tue Nov 18 21:07:00 EST 2025
Wed Aug 27 02:34:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-77d8a190161d00e8d4c23e5003e43c4d2421931f6226f206e972a3ea7cd687f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3081-362X
PQID 2878507969
PQPubID 75733
PageCount 11
ParticipantIDs crossref_primary_10_1109_JSEN_2023_3313236
proquest_journals_2878507969
crossref_citationtrail_10_1109_JSEN_2023_3313236
ieee_primary_10251120
PublicationCentury 2000
PublicationDate 2023-10-15
PublicationDateYYYYMMDD 2023-10-15
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
tam (ref17) 2011
ref36
ref30
ref11
ref33
ref10
ref32
islam (ref31) 2017; 14
ref2
ref1
ref39
ref16
ref38
ref19
bridle (ref47) 1989
ref18
thakor (ref6) 2012
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
chollet (ref46) 2016
ref21
ref43
ref28
ref27
ref29
ref8
faye (ref14) 2022; 9
ref7
ref9
ref4
ref3
ref5
ref40
References_xml – ident: ref44
  doi: 10.1093/gigascience/gix034
– ident: ref12
  doi: 10.3390/bioengineering9040141
– ident: ref5
  doi: 10.1109/TBME.2011.2131142
– ident: ref2
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref15
  doi: 10.1007/s12559-015-9379-z
– ident: ref16
  doi: 10.1016/j.neucom.2016.05.035
– ident: ref25
  doi: 10.1038/s41598-020-62712-6
– ident: ref19
  doi: 10.1109/IEMBS.2009.5333585
– ident: ref9
  doi: 10.1109/TBME.2008.923152
– ident: ref3
  doi: 10.3390/s120201211
– ident: ref13
  doi: 10.1371/journal.pone.0000637
– ident: ref24
  doi: 10.1038/s41598-022-15252-0
– ident: ref41
  doi: 10.1016/0013-4694(68)90080-1
– ident: ref34
  doi: 10.1109/JAS.2020.1003336
– ident: ref45
  doi: 10.1109/MSP.2008.4408441
– ident: ref23
  doi: 10.3389/fnins.2022.1045851
– ident: ref28
  doi: 10.1088/1741-2552/ac115d
– ident: ref1
  doi: 10.1093/acprof:oso/9780195388855.001.0001
– start-page: 211
  year: 1989
  ident: ref47
  article-title: Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters
  publication-title: Proc 2nd Int Conf Neural Inf Process Syst
– ident: ref8
  doi: 10.1109/JPROC.2012.2184829
– ident: ref37
  doi: 10.1088/1741-2552/aace8c
– start-page: 6344
  year: 2011
  ident: ref17
  article-title: Performance of common spatial pattern under a smaller set of EEG electrodes in brain-computer interface on chronic stroke patients: A multi-session dataset study
  publication-title: Proc Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref38
  doi: 10.3389/fnins.2012.00055
– volume: 9
  start-page: 726
  year: 2022
  ident: ref14
  article-title: EEG channel selection techniques in motor imagery applications: A review and new perspectives
  publication-title: Bioengineering
  doi: 10.3390/bioengineering9120726
– volume: 14
  year: 2017
  ident: ref31
  article-title: Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA
  publication-title: J Neural Eng
– ident: ref36
  doi: 10.1109/ACCESS.2020.3009665
– ident: ref39
  doi: 10.1093/gigascience/giz002
– ident: ref43
  doi: 10.1109/TNSRE.2006.875642
– ident: ref10
  doi: 10.1109/TBME.2004.827827
– ident: ref33
  doi: 10.3389/fnbot.2017.00060
– year: 2016
  ident: ref46
  article-title: Xception: Deep learning with depthwise separable convolutions
  publication-title: arXiv 1610 02357
– ident: ref30
  doi: 10.1109/IoT-SIU.2018.8519891
– ident: ref42
  doi: 10.1109/4235.996017
– ident: ref7
  doi: 10.1016/B978-0-12-800945-1.00023-9
– ident: ref18
  doi: 10.1109/IJCNN.2008.4634130
– ident: ref27
  doi: 10.1016/j.bspc.2021.102621
– ident: ref29
  doi: 10.1145/3397850
– ident: ref32
  doi: 10.1016/j.bspc.2021.102983
– ident: ref20
  doi: 10.1109/BMEI.2011.6098380
– year: 2012
  ident: ref6
  article-title: Building brain machine interfaces-Neuroprosthetic control with electrocorticographic signals
  publication-title: IEEE Life Sci Newslett
– ident: ref35
  doi: 10.1109/TNSRE.2020.3048106
– ident: ref21
  doi: 10.1007/s10462-019-09694-8
– ident: ref4
  doi: 10.1109/MC.2012.107
– ident: ref11
  doi: 10.3390/bioengineering9070323
– ident: ref22
  doi: 10.1109/TNSRE.2020.3020975
– ident: ref40
  doi: 10.1007/BF00412364
– ident: ref26
  doi: 10.1088/1741-2552/ac0583
SSID ssj0019757
Score 2.4100018
Snippet Brain-computer interfaces (BCI) enable people to communicate with external instruments through brain activity recorded by electroencephalography (EEG). BCI...
Brain–computer interfaces (BCI) enable people to communicate with external instruments through brain activity recorded by electroencephalography (EEG). BCI...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25356
SubjectTerms Brain modeling
Channel selection
Channels
Classification
Datasets
deep learning
EEG-Net
Electric potential
Electrodes
Electroencephalography
electroencephalography (EEG)
Feature extraction
generalized optimal EEG channels
Genetic algorithms
Human-computer interface
Imagery
lateralized readiness potential (LRP)
motor imagery (MI)
non-dominated sorting genetic algorithm (NSGA)-II algorithm
optimization
Sensors
Sorting algorithms
Task analysis
Title Generalized Optimal EEG Channels Selection for Motor Imagery Brain-Computer Interface
URI https://ieeexplore.ieee.org/document/10251120
https://www.proquest.com/docview/2878507969
Volume 23
WOSCitedRecordID wos001098067300144&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5UBPXgW6wv9uBJSN0km30cVVofaBVU6C2kmwkK2optBf31zmy3VRAFbznshpAvs_PNbub7GNtXOgFdqCwyADKSqmOjTmxUBLERsopJktyLuF7qVsu02_YmNKv7XhgA8D-fQZ0u_Vl-2XND2irDCCdCnGCFPq21GjVrTY4MrPaynhjBIpKpbocjzFjYw4vbRqtOPuH1lJQKvRzzVxLyrio_lmKfX5pL_3yyZbYYiCQ_GiG_wqagu8oWvskLrrK54HD-8L7G7oO-9OMHlPwa14lnnNxonHJqL-higuS33hEHYeLIY_lVD4txfv5MEhfv_JiMJKKxAwT324hV4WCd3TcbdydnUbBUiFxi5QC5dGkK4gAqLoUAU0qXpJBhaINMnSzpgNimcaWQlVWJUGB1UqRQaFcqoxG7DTbT7XVhk3GRiUpaVRQVVnRZZTqxTokPQFIaLLJcjYnxO85d0Bsn24un3NcdwuYES06w5AGWGjuYTHkZiW38NXidcPg2cARBje2MkcxDPPZzrAsNMl-r7NYv07bZPN2d0lKc7bCZwesQdtmsexs89l_3_Kf2CQzEzQE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEB1VFIlyAMqHCKVlDz0hOV3b6_04UhQKJaSVACk3y1mPRSRIEAQk-uuZ2WwACYHUmw-7suXn2Xmz63kP4Ls2GZpKF4lFVInSA5cMUqsTTK1UTcqS5EHEtWt6Pdvvu7-xWT30wiBi-PkM23wZzvLrsb_jrTKKcCbEGVXoHwulMjlt13o6NHAmCHtSDMtE5aYfDzFT6X78Pu302uwU3s5ZqzAIMj-noeCr8moxDhnmYPk_n20FliKVFHtT7D_DBxytwuILgcFVWIge5xcPa3AeFaaH_7AWf2iluKLJnc4vwQ0GI0qR4jR44hBQgpisOBlTOS6Orljk4kH8ZCuJZOYBIcJGYlN5XIfzg87Z_mESTRUSnzk1ITZd24pZgE5rKdHWymc5FhTcqHKvaj4idnnaaOJlTSY1OpNVOVbG19oaQm8D5kbjEW6CkIVslNNV1VBNVzR2kJqcGQFmtaUyy7dAzt5x6aPiOBtfXJah8pCuZFhKhqWMsLRg92nK9VRu473B64zDi4FTCFqwPUOyjBF5W1JlaIn7Ou223pi2AwuHZyfdsnvUO_4Cn_hOnKTSYhvmJjd3-BXm_f1keHvzLXx2j-NR0Eg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Optimal+EEG+Channels+Selection+for+Motor+Imagery+Brain-Computer+Interface&rft.jtitle=IEEE+sensors+journal&rft.au=Lee%2C+Hsiang-Chen&rft.au=Lee%2C+Ching-Hung&rft.date=2023-10-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=23&rft.issue=20&rft.spage=25356&rft.epage=25366&rft_id=info:doi/10.1109%2FJSEN.2023.3313236&rft.externalDocID=10251120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon