DOA Tracking Algorithm Based on AVS Pseudo-Smoothing for Coherent Acoustic Targets

A direction-of-arrival (DOA) tracking algorithm based on AVS pseudo-smoothing, referred to as the FOC-M<inline-formula><tex-math notation="LaTeX">\delta</tex-math></inline-formula>-GLMBF algorithm, is proposed to track coherent acoustic targets. This algorithm adapt...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems Vol. 59; no. 6; pp. 1 - 19
Main Authors: Zhang, Jun, Bao, Ming, Yang, Jianhua, Chen, Zhifei, Hou, Hong
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9251, 1557-9603
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A direction-of-arrival (DOA) tracking algorithm based on AVS pseudo-smoothing, referred to as the FOC-M<inline-formula><tex-math notation="LaTeX">\delta</tex-math></inline-formula>-GLMBF algorithm, is proposed to track coherent acoustic targets. This algorithm adapts the marginalized <inline-formula><tex-math notation="LaTeX">\delta</tex-math></inline-formula>-generalized labeled multi-Bernoulli (M<inline-formula><tex-math notation="LaTeX">\delta</tex-math></inline-formula>-GLMB) fast filtering algorithm with the fourth-order cumulants (FOC) pseudo-smoothing. It introduces higher-order cumulants capable of suppressing Gaussian noise, and constructs the cumulant matrices and the likelihood function that can be used for AVS pseudo-smoothing. The processing enhances the signal-to-noise ratio (SNR) by suppressing measurement noise, and can accomplish decoherence when there are coherent targets. Based on the labeled random finite set (RFS), it additionally introduces the index label to distinguish different motion models as hidden states, and achieves better tracking performance through the weighted mixture of multiple models. By using the AVS hybrid signal as the measurement, the algorithm avoids measurement-to-track association maps in the filtering process, to effectively support the tracking problem when targets are close to each other or have intersecting trajectories. In addition, as a joint prediction-and-update strategy, the algorithm performs the hypothesis truncation by the K-shortest path method only once, thereby further compensating for the burden of cumulant calculation. Simulations and field experiments verify the superiority of the proposed tracking algorithm for coherent targets under low SNR.
AbstractList A direction-of-arrival (DOA) tracking algorithm based on acoustic vector sensor (AVS) pseudosmoothing, referred to as the FOC-M$\delta$-GLMBF algorithm, is proposed to track coherent acoustic targets. This algorithm adapts the marginalized $\delta$-generalized labeled multi-Bernoulli (M$\delta$-GLMB) fast filtering algorithm with the fourth-order cumulants pseudosmoothing. It introduces higher-order cumulants capable of suppressing Gaussian noise, and constructs the cumulant matrices and the likelihood function that can be used for AVS pseudosmoothing. The processing enhances the signal-to-noise ratio (SNR) by suppressing measurement noise, and can accomplish decoherence when there are coherent targets. Based on the labeled random finite set (RFS), it additionally introduces the index label to distinguish different motion models as hidden states, and achieves better tracking performance through the weighted mixture of multiple models. By using the AVS hybrid signal as the measurement, the algorithm avoids measurement-to-track association maps in the filtering process, to effectively support the tracking problem when targets are close to each other or have intersecting trajectories. In addition, as a joint prediction-and-update strategy, the algorithm performs the hypothesis truncation by the K-shortest path method only once, thereby further compensating for the burden of cumulant calculation. Simulations and field experiments verify the superiority of the proposed tracking algorithm for coherent targets under low SNR.
A direction-of-arrival (DOA) tracking algorithm based on AVS pseudo-smoothing, referred to as the FOC-M<inline-formula><tex-math notation="LaTeX">\delta</tex-math></inline-formula>-GLMBF algorithm, is proposed to track coherent acoustic targets. This algorithm adapts the marginalized <inline-formula><tex-math notation="LaTeX">\delta</tex-math></inline-formula>-generalized labeled multi-Bernoulli (M<inline-formula><tex-math notation="LaTeX">\delta</tex-math></inline-formula>-GLMB) fast filtering algorithm with the fourth-order cumulants (FOC) pseudo-smoothing. It introduces higher-order cumulants capable of suppressing Gaussian noise, and constructs the cumulant matrices and the likelihood function that can be used for AVS pseudo-smoothing. The processing enhances the signal-to-noise ratio (SNR) by suppressing measurement noise, and can accomplish decoherence when there are coherent targets. Based on the labeled random finite set (RFS), it additionally introduces the index label to distinguish different motion models as hidden states, and achieves better tracking performance through the weighted mixture of multiple models. By using the AVS hybrid signal as the measurement, the algorithm avoids measurement-to-track association maps in the filtering process, to effectively support the tracking problem when targets are close to each other or have intersecting trajectories. In addition, as a joint prediction-and-update strategy, the algorithm performs the hypothesis truncation by the K-shortest path method only once, thereby further compensating for the burden of cumulant calculation. Simulations and field experiments verify the superiority of the proposed tracking algorithm for coherent targets under low SNR.
Author Yang, Jianhua
Chen, Zhifei
Zhang, Jun
Bao, Ming
Hou, Hong
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0002-7283-1853
  surname: Zhang
  fullname: Zhang, Jun
  organization: Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Ming
  orcidid: 0000-0001-8486-2377
  surname: Bao
  fullname: Bao, Ming
  organization: Nanjing University, Suzhou, China
– sequence: 3
  givenname: Jianhua
  orcidid: 0000-0001-8765-8662
  surname: Yang
  fullname: Yang, Jianhua
  organization: Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Zhifei
  surname: Chen
  fullname: Chen, Zhifei
  organization: Institude of Acoustic, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Hong
  surname: Hou
  fullname: Hou, Hong
  organization: Northwestern Polytechnical University, Xi'an, China
BookMark eNp9kE1LAzEQhoNUsK3-AMFDwPPWfO1mc1xr_YBCxa5elzSbtKntpibZg__eXdqDeBAGhoH3mWGeERg0rtEAXGM0wRiJu7KYLScEETqhRAiB8BkY4jTlicgQHYAhQjhPBEnxBRiFsO1GljM6BG8PiwKWXqpP26xhsVs7b-NmD-9l0DV0DSw-lvA16LZ2yXLvXNz0OeM8nLqN9rqJsFCuDdEqWEq_1jFcgnMjd0FfnfoYvD_OyulzMl88vUyLeaKIYDHhjGuTpauM0QxzQ2uFcLbKJM5pV-mKK6I5M0hwRSk3jGNek9xwnhFlRPfpGNwe9x68-2p1iNXWtb7pTlakE0BIxgjuUviYUt6F4LWpDt7upf-uMKp6dVWvrurVVSd1HcP_MMpGGa1ropd29y95cySt1vrXJSw4Y4L-AHbOe54
CODEN IEARAX
CitedBy_id crossref_primary_10_1109_JISPIN_2025_3577976
crossref_primary_10_1109_TVT_2025_3529491
crossref_primary_10_1109_TIM_2025_3550215
crossref_primary_10_1109_TSP_2024_3472068
Cites_doi 10.2514/3.8233
10.1109/TSP.2006.881190
10.1109/TSP.2020.3021237
10.1109/TSP.2016.2641392
10.1109/79.221324
10.1109/48.650832
10.1109/78.317869
10.1109/29.17496
10.1155/2013/727430
10.1109/OCEANS-Genova.2015.7271632
10.1016/j.sigpro.2008.04.010
10.1109/TAC.1979.1102177
10.3390/s19184031
10.1109/lawp.2005.860194
10.1109/78.978374
10.1109/joe.2009.2036554
10.1109/TSP.2007.908968
10.1109/TAES.2013.6621845
10.1109/TAES.2012.6178069
10.1109/TSP.2006.870630
10.1109/IVS.2017.7995809
10.1109/48.838989
10.1049/iet-rsn:20050140
10.1016/j.dsp.2008.01.002
10.1109/TSP.2014.2364014
10.1109/ICME.2011.6011965
10.1109/78.709509
10.1109/LSP.2014.2310137
10.1109/9.1299
10.1109/78.806070
10.1109/78.960397
10.1109/CISP-BMEI53629.2021.9624459
10.1109/7.640267
10.1109/5.75086
10.1109/TSP.2012.2199987
10.1121/1.3676699
10.1016/j.sigpro.2019.05.028
10.1109/LCOMM.2021.3099569
10.1109/JSEN.2007.900963
10.1109/ICCAIS46528.2019.9074571
10.1109/JSEN.2014.2327633
10.1109/78.382404
10.1109/TSP.2013.2257765
10.1109/78.978377
10.1109/78.506626
10.1109/7.826308
10.1109/TVT.2021.3093063
10.1109/TAES.2004.1292168
10.1016/j.sigpro.2011.11.032
10.1109/78.482014
10.1109/TAES.2019.2941104
10.1109/JOE.2019.2934211
10.1109/tsp.2014.2323064
10.1109/tsp.2008.2007924
10.1109/ACCESS.2020.3048952
10.1109/taes.2005.1561884
10.1109/JOE.1983.1145560
10.1109/TSP.2013.2259822
10.1109/OCEANSE.2017.8084844
10.1109/JPROC.2018.2789427
10.1109/TSP.2017.2768025
10.1109/TASSP.1985.1164649
10.1109/TAES.2009.5259174
10.1109/TSP.2010.2077634
10.1287/opre.16.3.682
10.1109/ICASSP.2012.6288458
10.1109/TAES.2003.1261119
10.1016/j.sigpro.2009.03.008
10.1109/LSP.2016.2557078
10.1109/TSP.2015.2504349
10.1109/JSEN.2011.2168204
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
DOI 10.1109/TAES.2023.3299901
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9603
EndPage 19
ExternalDocumentID 10_1109_TAES_2023_3299901
10197449
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
IFIPE
IPLJI
JAVBF
LAI
M43
OCL
P2P
RIA
RIE
RNS
TN5
41~
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IFJZH
VH1
7SP
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c294t-747ef65b643617f3dc016b6a1831835b7c2e74f097c337f4717d28f7762cf9023
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001162264000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9251
IngestDate Mon Jun 30 13:20:19 EDT 2025
Sat Nov 29 01:51:36 EST 2025
Tue Nov 18 21:45:26 EST 2025
Wed Aug 27 02:57:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-747ef65b643617f3dc016b6a1831835b7c2e74f097c337f4717d28f7762cf9023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8765-8662
0000-0001-8486-2377
0000-0002-7283-1853
0009-0008-8614-2988
0000-0002-8983-0240
PQID 2901226421
PQPubID 85477
PageCount 19
ParticipantIDs crossref_citationtrail_10_1109_TAES_2023_3299901
ieee_primary_10197449
crossref_primary_10_1109_TAES_2023_3299901
proquest_journals_2901226421
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on aerospace and electronic systems
PublicationTitleAbbrev T-AES
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref53
ref52
ref11
ref10
ref17
ref19
ref18
Chen (ref78) 2015; 47
Thouin (ref54) 2011
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
Yang (ref16) 2019
ref44
ref43
ref49
ref8
ref7
Mahler (ref25) 2007
ref9
ref4
ref3
Choppala (ref58) 2014
ref6
ref5
ref40
ref35
ref79
ref34
ref37
ref36
ref31
ref75
ref30
ref74
Zhong (ref21) 2011
ref33
ref77
ref32
ref76
ref2
ref1
ref38
Hoang (ref39) 2015
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref69
ref20
Nannuru (ref55) 2013
ref64
ref63
ref22
ref66
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref79
  doi: 10.2514/3.8233
– ident: ref27
  doi: 10.1109/TSP.2006.881190
– ident: ref11
  doi: 10.1109/TSP.2020.3021237
– ident: ref38
  doi: 10.1109/TSP.2016.2641392
– ident: ref13
  doi: 10.1109/79.221324
– ident: ref6
  doi: 10.1109/48.650832
– ident: ref1
  doi: 10.1109/78.317869
– ident: ref67
  doi: 10.1109/29.17496
– ident: ref50
  doi: 10.1155/2013/727430
– ident: ref64
  doi: 10.1109/OCEANS-Genova.2015.7271632
– ident: ref75
  doi: 10.1016/j.sigpro.2008.04.010
– ident: ref23
  doi: 10.1109/TAC.1979.1102177
– start-page: 999
  volume-title: Proc. Int. Conf. Inf. Fusion
  year: 2015
  ident: ref39
  article-title: A fast implementation of the generalized labeled multi-Bernoulli filter with joint prediction and update
– ident: ref59
  doi: 10.3390/s19184031
– ident: ref69
  doi: 10.1109/lawp.2005.860194
– ident: ref17
  doi: 10.1109/78.978374
– start-page: 245
  volume-title: Proc. Eur. Signal Proces. Conf.
  year: 2011
  ident: ref21
  article-title: Particle filtering for 2-D direction of arrival tracking using an acoustic vector sensor
– start-page: 2247
  volume-title: Proc. IEEE Adv. Inf. Technol. Electron. Autom. Control Conf.
  year: 2019
  ident: ref16
  article-title: An indirect location method for indoor target tracking based on single acoustic vector sensor
– ident: ref74
  doi: 10.1109/joe.2009.2036554
– ident: ref24
  doi: 10.1109/TSP.2007.908968
– ident: ref49
  doi: 10.1109/TAES.2013.6621845
– ident: ref32
  doi: 10.1109/TAES.2012.6178069
– ident: ref9
  doi: 10.1109/TSP.2006.870630
– ident: ref41
  doi: 10.1109/IVS.2017.7995809
– ident: ref7
  doi: 10.1109/48.838989
– ident: ref73
  doi: 10.1049/iet-rsn:20050140
– ident: ref76
  doi: 10.1016/j.dsp.2008.01.002
– ident: ref34
  doi: 10.1109/TSP.2014.2364014
– ident: ref19
  doi: 10.1109/ICME.2011.6011965
– ident: ref4
  doi: 10.1109/78.709509
– ident: ref31
  doi: 10.1109/LSP.2014.2310137
– start-page: 1632
  volume-title: Proc. Int. Conf. Inf. Fusion Istanbul Turkey
  year: 2013
  ident: ref55
  article-title: Multi-Bernoulli filter for superpositional sensors
– ident: ref44
  doi: 10.1109/9.1299
– ident: ref8
  doi: 10.1109/78.806070
– ident: ref5
  doi: 10.1109/78.960397
– ident: ref51
  doi: 10.1109/CISP-BMEI53629.2021.9624459
– ident: ref43
  doi: 10.1109/7.640267
– ident: ref12
  doi: 10.1109/5.75086
– ident: ref62
  doi: 10.1109/TSP.2012.2199987
– ident: ref3
  doi: 10.1121/1.3676699
– ident: ref52
  doi: 10.1016/j.sigpro.2019.05.028
– ident: ref57
  doi: 10.1109/LCOMM.2021.3099569
– ident: ref72
  doi: 10.1109/JSEN.2007.900963
– ident: ref60
  doi: 10.1109/ICCAIS46528.2019.9074571
– ident: ref71
  doi: 10.1109/JSEN.2014.2327633
– ident: ref14
  doi: 10.1109/78.382404
– ident: ref30
  doi: 10.1109/TSP.2013.2257765
– ident: ref18
  doi: 10.1109/78.978377
– ident: ref68
  doi: 10.1109/78.506626
– ident: ref46
  doi: 10.1109/7.826308
– start-page: 1
  volume-title: Proc. Int. Conf. Inf. Fusion
  year: 2014
  ident: ref58
  article-title: Adapting the multi-Bernoulli filter to phased array observations using MUSIC as pseudo-likelihood
– ident: ref65
  doi: 10.1109/TVT.2021.3093063
– ident: ref45
  doi: 10.1109/TAES.2004.1292168
– ident: ref48
  doi: 10.1016/j.sigpro.2011.11.032
– volume-title: Statistical Multisource-Multitarget Information Fusion
  year: 2007
  ident: ref25
– ident: ref2
  doi: 10.1109/78.482014
– ident: ref40
  doi: 10.1109/TAES.2019.2941104
– ident: ref10
  doi: 10.1109/JOE.2019.2934211
– ident: ref36
  doi: 10.1109/tsp.2014.2323064
– ident: ref29
  doi: 10.1109/tsp.2008.2007924
– ident: ref61
  doi: 10.1109/ACCESS.2020.3048952
– ident: ref28
  doi: 10.1109/taes.2005.1561884
– ident: ref22
  doi: 10.1109/JOE.1983.1145560
– ident: ref35
  doi: 10.1109/TSP.2013.2259822
– start-page: 1
  volume-title: Proc. Int. Conf. Inf. Fusion
  year: 2011
  ident: ref54
  article-title: Multi-target tracking for measurement models with additive contributions
– volume: 47
  start-page: 377
  issue: 3
  year: 2015
  ident: ref78
  article-title: DOA tracking algorithm for acoustic vector-sensor array via kalman filter and OPASTD
  publication-title: Trans. Nanjing Univ. Aeronaut. Astronaut.
– ident: ref15
  doi: 10.1109/OCEANSE.2017.8084844
– ident: ref33
  doi: 10.1109/JPROC.2018.2789427
– ident: ref56
  doi: 10.1109/TSP.2017.2768025
– ident: ref66
  doi: 10.1109/TASSP.1985.1164649
– ident: ref47
  doi: 10.1109/TAES.2009.5259174
– ident: ref70
  doi: 10.1109/TSP.2010.2077634
– ident: ref37
  doi: 10.1287/opre.16.3.682
– ident: ref63
  doi: 10.1109/ICASSP.2012.6288458
– ident: ref26
  doi: 10.1109/TAES.2003.1261119
– ident: ref77
  doi: 10.1016/j.sigpro.2009.03.008
– ident: ref42
  doi: 10.1109/LSP.2016.2557078
– ident: ref53
  doi: 10.1109/TSP.2015.2504349
– ident: ref20
  doi: 10.1109/JSEN.2011.2168204
SSID ssj0014843
Score 2.4458468
Snippet A direction-of-arrival (DOA) tracking algorithm based on AVS pseudo-smoothing, referred to as the FOC-M<inline-formula><tex-math...
A direction-of-arrival (DOA) tracking algorithm based on acoustic vector sensor (AVS) pseudosmoothing, referred to as the FOC-M$\delta$-GLMBF algorithm, is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Acoustic measurements
Acoustic vector sensor
Acoustics
Algorithms
Coherence
Covariance matrices
Direction of arrival
Direction-of-arrival estimation
Estimation
Filtering algorithms
Filtration
generalized labeled multi-bernoulli
higher-order cumulants
Noise measurement
pseudo-smoothing
Random noise
Shortest-path problems
Signal to noise ratio
Target tracking
Tracking problem
Title DOA Tracking Algorithm Based on AVS Pseudo-Smoothing for Coherent Acoustic Targets
URI https://ieeexplore.ieee.org/document/10197449
https://www.proquest.com/docview/2901226421
Volume 59
WOSCitedRecordID wos001162264000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014843
  issn: 0018-9251
  databaseCode: RIE
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-EeNCDnxhRND14Mhl2W1npcRqIJ0IEDbdl7TolAWZg-Pf7XlcIidHEZIcd2mV5r6_v176PHyF3jCuufSE85afMA3wrvVQY5vmhDlSmQmzCZskmxGDQnUzk0BWr21oYY4xNPjNtfLWx_KzQa7wqAwv3Af5yWSM1IaKqWGsbMuBdlyLngwWD13YhTJ_Jh3HcG7WRJ7wdwu4rHQHMxglZVpUfW7H1L_3jf_7ZCTlyQJLGleZPyZ5ZnJHDnfaC5-QFDn4UnJHG63Aaz96L5bT8mNNH8FwZLRY0fhvR4cqss8IbzQvQGY4DFEuxaAPbNtFYF5bui45txviqQV77vfHTs-c4FDwdSF56cFowedRRADwAq-RhpgHjqSgFS4ano4QOjOA5k0KHocjBVYks6OYg3kDnEkR2QeqLYmEusbpbcBYC4MpUlwfcpHmkcpYFKV6kahU1CdsINdGuwTjyXMwSe9BgMkE9JKiHxOmhSe63Uz6r7hp_DW6g4HcGVjJvktZGdYkzwFWC4WGsEQ78q1-mXZMD_HqVmtIi9XK5NjdkX3-V09Xy1q6tb-OJyLU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86BfXg58Tp1Bw8CZ1pmy3LscrGRB3DTdmtNGmqA11lH_79vpdmMhAFoYceElrey8v7Je_jR8gF44prXwhP-QnzAN9KLxGGeX6oA5WqEJuwWbIJ0e02h0PZc8XqthbGGGOTz0wNX20sP831HK_KwMJ9gL9crpK1OucBK8q1voMGvOmS5HywYfDbLojpM3k1iFr9GjKF10LYf6WjgFm4Icur8mMzth6mvfPPf9sl2w5K0qjQ_R5ZMeN9srXUYPCAPMLRj4I70nghTqO3l3wymr2-02vwXSnNxzR67tPe1MzT3Ou_56A1HAc4lmLZBjZuopHOLeEXHdic8WmZPLVbg5uO51gUPB1IPvPgvGCyRl0B9AC0koWpBpSnGgnYMjx1JXRgBM-YFDoMRQbOSqRBMxOwS-pMgsgOSWmcj80R1ncLzkKAXKlq8oCbJGuojKVBglepWjUqhC2EGmvXYhyZLt5ie9RgMkY9xKiH2OmhQi6_p3wU_TX-GlxGwS8NLGReIdWF6mJngtMYA8RYJRz4x79MOycbncHDfXx_2707IZv4pSJRpUpKs8ncnJJ1_TkbTSdndp19AYHwy_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DOA+Tracking+Algorithm+Based+on+AVS+Pseudo-Smoothing+for+Coherent+Acoustic+Targets&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Zhang%2C+Jun&rft.au=Bao%2C+Ming&rft.au=Yang%2C+Jianhua&rft.au=Chen%2C+Zhifei&rft.date=2023-12-01&rft.issn=0018-9251&rft.eissn=1557-9603&rft.volume=59&rft.issue=6&rft.spage=8175&rft.epage=8193&rft_id=info:doi/10.1109%2FTAES.2023.3299901&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAES_2023_3299901
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon