Recurrent Residual Dual Attention Network for Airborne Laser Scanning Point Cloud Semantic Segmentation

Kernel point convolution (KPConv) can effectively represent the point features of point cloud data. However, KPConv-based methods just consider the local information of each point, which is very difficult to characterize the intrinsic properties of airborne laser scanning (ALS) point clouds for comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing Jg. 61; S. 1 - 14
Hauptverfasser: Zeng, Tao, Luo, Fulin, Guo, Tan, Gong, Xiuwen, Xue, Jingyun, Li, Hanshan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0196-2892, 1558-0644
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Kernel point convolution (KPConv) can effectively represent the point features of point cloud data. However, KPConv-based methods just consider the local information of each point, which is very difficult to characterize the intrinsic properties of airborne laser scanning (ALS) point clouds for complex laser scanning conditions. Therefore, we rethink KPConv and propose a recurrent residual dual attention network (RRDAN) based on the encoder-decoder structure for the semantic segmentation of ALS point cloud data. In the encoder stage, we design an attention KPConv (AKPConv) block by using a scaling factor of batch normalization to highlight the significant channel information. Then, we use the AKPConv block to develop a recurrent residual kernel attention (RRKA) module to iteratively aggregate the local neighborhood features. In the decoder stage, we design a global and local channel attention (GLCA) module with global connection and local 1-D convolution to interact the global and local information after fusing the upsampled high-level representations and the skip-connected low-level features. In addition, to reduce the influence of the long-tailed distribution of reflection intensity, we apply gamma transformation to correct the data as a normal distribution. The proposed RRDAN can achieve diversified feature aggregation to implement the refined semantic segmentation of ALS point clouds. We evaluate our method on three ALS datasets (i.e., ISPRS, DCF2019, and LASDU) to demonstrate its performance compared to a few advanced methods. The code is available at https://github.com/SC-shendazt/RRDAN .
AbstractList Kernel point convolution (KPConv) can effectively represent the point features of point cloud data. However, KPConv-based methods just consider the local information of each point, which is very difficult to characterize the intrinsic properties of airborne laser scanning (ALS) point clouds for complex laser scanning conditions. Therefore, we rethink KPConv and propose a recurrent residual dual attention network (RRDAN) based on the encoder–decoder structure for the semantic segmentation of ALS point cloud data. In the encoder stage, we design an attention KPConv (AKPConv) block by using a scaling factor of batch normalization to highlight the significant channel information. Then, we use the AKPConv block to develop a recurrent residual kernel attention (RRKA) module to iteratively aggregate the local neighborhood features. In the decoder stage, we design a global and local channel attention (GLCA) module with global connection and local 1-D convolution to interact the global and local information after fusing the upsampled high-level representations and the skip-connected low-level features. In addition, to reduce the influence of the long-tailed distribution of reflection intensity, we apply gamma transformation to correct the data as a normal distribution. The proposed RRDAN can achieve diversified feature aggregation to implement the refined semantic segmentation of ALS point clouds. We evaluate our method on three ALS datasets (i.e., ISPRS, DCF2019, and LASDU) to demonstrate its performance compared to a few advanced methods. The code is available at https://github.com/SC-shendazt/RRDAN .
Author Zeng, Tao
Gong, Xiuwen
Li, Hanshan
Luo, Fulin
Guo, Tan
Xue, Jingyun
Author_xml – sequence: 1
  givenname: Tao
  surname: Zeng
  fullname: Zeng, Tao
  email: sczt21@163.com
  organization: School of Mechatronic Engineering, Xi'an Technological University, Xi'an, China
– sequence: 2
  givenname: Fulin
  orcidid: 0000-0002-7696-0775
  surname: Luo
  fullname: Luo, Fulin
  email: luoflyn@163.com
  organization: College of Computer Science, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Tan
  orcidid: 0000-0001-9523-8094
  surname: Guo
  fullname: Guo, Tan
  email: guot@cqupt.edu.cn
  organization: School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 4
  givenname: Xiuwen
  orcidid: 0000-0002-1078-1571
  surname: Gong
  fullname: Gong, Xiuwen
  email: xiuwen.gong@sydney.edu.au
  organization: Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
– sequence: 5
  givenname: Jingyun
  surname: Xue
  fullname: Xue, Jingyun
  organization: School of Mechatronic Engineering, Xi'an Technological University, Xi'an, China
– sequence: 6
  givenname: Hanshan
  surname: Li
  fullname: Li, Hanshan
  organization: School of Mechatronic Engineering, Xi'an Technological University, Xi'an, China
BookMark eNp9kEFPAjEQhRuDiYD-ABMPTTwvTrstuz0SVDQhagDPm253IEVosbsb47-3GzgYD16mk-l877VvQHrOOyTkmsGIMVB3q9liOeLA01HKc8khOyN9JmWewFiIHukDU-OE54pfkEFdbwGYkCzrk80CTRsCuoYusLZVq3f0viuTpolD6x19webLhw-69oFObCh9cEjnusZAl0Y7Z92GvnkbFaY731Z0iXsdSRObzT5q6E7lkpyv9a7Gq9M5JO-PD6vpUzJ_nT1PJ_PEcCWaJANtQMGYK5PKEgCxFEqWTOkyz0QJshKVLkGMc26k1FVVKYWVEKXIszRepENye9Q9BP_ZYt0UW98GFy0LnqcgQAmWxi123DLB13XAdXEIdq_Dd8Gg6PIsujyLLs_ilGdksj-Msce_NUHb3b_kzZG0iPjLiQkF8VE_vTGF4g
CODEN IGRSD2
CitedBy_id crossref_primary_10_1088_1361_6501_ad5bf8
crossref_primary_10_1109_TGRS_2024_3458013
crossref_primary_10_1109_TGRS_2025_3535104
crossref_primary_10_1109_JSTARS_2024_3469269
crossref_primary_10_1109_LGRS_2023_3294246
crossref_primary_10_1109_TGRS_2024_3353298
crossref_primary_10_3390_rs16010092
crossref_primary_10_1109_TGRS_2023_3348797
crossref_primary_10_1109_TGRS_2024_3525133
crossref_primary_10_3390_rs16050782
crossref_primary_10_1109_TGRS_2024_3522060
crossref_primary_10_3390_rs16183386
crossref_primary_10_1109_TGRS_2024_3392267
crossref_primary_10_1109_TGRS_2024_3484681
crossref_primary_10_1109_TGRS_2025_3572414
crossref_primary_10_1109_JSTARS_2024_3422973
crossref_primary_10_1109_TGRS_2023_3336053
Cites_doi 10.1109/WACV.2019.00167
10.1016/j.isprsjprs.2013.11.001
10.1109/CVPR52688.2022.01163
10.1109/TPAMI.2020.3005434
10.1109/TGRS.2014.2316195
10.1109/ICCV.2019.00651
10.1016/j.isprsjprs.2022.01.012
10.1109/TITS.2023.3248117
10.1109/ICCV48922.2021.00492
10.1109/CVPR.2017.16
10.1109/CVPR.2019.01054
10.1109/TPAMI.2023.3238516
10.1109/TGRS.2023.3241097
10.1109/CVPR.2018.00745
10.1007/s41064-019-00073-0
10.5194/isprsarchives-XLI-B3-655-2016
10.1007/978-3-030-58592-1_20
10.1109/TGRS.2022.3158362
10.1016/j.isprsjprs.2021.04.016
10.1109/ICCV.2017.324
10.1109/CVPR46437.2021.01236
10.1109/CVPR52688.2022.01644
10.1016/j.isprsjprs.2021.04.017
10.1109/TGRS.2022.3201902
10.1109/TITS.2023.3243643
10.1109/CVPR46437.2021.00319
10.1109/TGRS.2022.3162582
10.1016/j.isprsjprs.2020.02.020
10.1016/j.isprsjprs.2020.03.016
10.1016/j.isprsjprs.2018.03.018
10.1016/j.isprsjprs.2022.03.019
10.1007/s11801-020-9104-3
10.1145/3326362
10.1016/j.isprsjprs.2020.02.004
10.3390/ijgi9070450
10.1109/TCYB.2022.3159815
10.1109/TPAMI.2022.3159589
10.3390/s18103347
10.1109/LGRS.2021.3107006
10.1109/TGRS.2021.3128764
10.1016/j.ins.2022.08.074
10.1016/j.isprsjprs.2020.05.023
10.1109/CVPR52688.2022.00831
10.1109/TGRS.2023.3234542
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2023.3285207
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 14
ExternalDocumentID 10_1109_TGRS_2023_3285207
10149028
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2023CDJXY-039
  funderid: 10.13039/501100012226
– fundername: Natural Science Foundation of Chongqing
  grantid: CSTB2022NSCQ-MSX0452
  funderid: 10.13039/501100005230
– fundername: National Natural Science Foundation of China
  grantid: 62071340; 62201109
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-70ac090629c35b00eeb495b19ab874b05d4dab04682c55addd99ed44b4873ab03
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001021331900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 10:17:57 EDT 2025
Sat Nov 29 03:32:23 EST 2025
Tue Nov 18 22:11:35 EST 2025
Wed Aug 27 02:25:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-70ac090629c35b00eeb495b19ab874b05d4dab04682c55addd99ed44b4873ab03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1078-1571
0000-0001-9523-8094
0000-0002-7696-0775
PQID 2830409413
PQPubID 85465
PageCount 14
ParticipantIDs crossref_primary_10_1109_TGRS_2023_3285207
ieee_primary_10149028
proquest_journals_2830409413
crossref_citationtrail_10_1109_TGRS_2023_3285207
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
yan (ref40) 2014; 52
ref17
ref16
ref38
ref19
ref18
liu (ref39) 2021
ref46
ref23
ref45
ref26
ref48
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
qi (ref24) 2017
ref28
gao (ref7) 2023; 24
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
hu (ref25) 2022; 44
References_xml – ident: ref43
  doi: 10.1109/WACV.2019.00167
– ident: ref42
  doi: 10.1016/j.isprsjprs.2013.11.001
– ident: ref48
  doi: 10.1109/CVPR52688.2022.01163
– ident: ref4
  doi: 10.1109/TPAMI.2020.3005434
– volume: 52
  start-page: 7658
  year: 2014
  ident: ref40
  article-title: Radiometric correction and normalization of airborne LiDAR intensity data for improving land-cover classification
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2014.2316195
– ident: ref30
  doi: 10.1109/ICCV.2019.00651
– ident: ref26
  doi: 10.1016/j.isprsjprs.2022.01.012
– ident: ref10
  doi: 10.1109/TITS.2023.3248117
– ident: ref36
  doi: 10.1109/ICCV48922.2021.00492
– ident: ref17
  doi: 10.1109/CVPR.2017.16
– start-page: 1
  year: 2017
  ident: ref24
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: Proc 31st Conf Neural Inf Process Syst
– ident: ref29
  doi: 10.1109/CVPR.2019.01054
– ident: ref22
  doi: 10.1109/TPAMI.2023.3238516
– ident: ref2
  doi: 10.1109/TGRS.2023.3241097
– ident: ref38
  doi: 10.1109/CVPR.2018.00745
– ident: ref18
  doi: 10.1007/s41064-019-00073-0
– ident: ref5
  doi: 10.5194/isprsarchives-XLI-B3-655-2016
– ident: ref35
  doi: 10.1007/978-3-030-58592-1_20
– ident: ref47
  doi: 10.1109/TGRS.2022.3158362
– ident: ref13
  doi: 10.1016/j.isprsjprs.2021.04.016
– ident: ref46
  doi: 10.1109/ICCV.2017.324
– ident: ref19
  doi: 10.1109/CVPR46437.2021.01236
– ident: ref20
  doi: 10.1109/CVPR52688.2022.01644
– start-page: 1
  year: 2021
  ident: ref39
  article-title: NAM: Normalization-based attention module
  publication-title: Proc 35th Conf Neural Inf Process Syst
– ident: ref21
  doi: 10.1016/j.isprsjprs.2021.04.017
– ident: ref8
  doi: 10.1109/TGRS.2022.3201902
– ident: ref14
  doi: 10.1109/TITS.2023.3243643
– volume: 24
  start-page: 2158
  year: 2023
  ident: ref7
  article-title: LFT-Net: Local feature transformer network for point clouds analysis
  publication-title: IEEE Trans Intell Transp Syst
– ident: ref34
  doi: 10.1109/CVPR46437.2021.00319
– ident: ref33
  doi: 10.1109/TGRS.2022.3162582
– ident: ref3
  doi: 10.1016/j.isprsjprs.2020.02.020
– ident: ref23
  doi: 10.1016/j.isprsjprs.2020.03.016
– ident: ref11
  doi: 10.1016/j.isprsjprs.2018.03.018
– ident: ref27
  doi: 10.1016/j.isprsjprs.2022.03.019
– ident: ref41
  doi: 10.1007/s11801-020-9104-3
– ident: ref28
  doi: 10.1145/3326362
– ident: ref9
  doi: 10.1016/j.isprsjprs.2020.02.004
– ident: ref44
  doi: 10.3390/ijgi9070450
– ident: ref31
  doi: 10.1109/TCYB.2022.3159815
– ident: ref12
  doi: 10.1109/TPAMI.2022.3159589
– ident: ref15
  doi: 10.3390/s18103347
– volume: 44
  start-page: 8338
  year: 2022
  ident: ref25
  article-title: Learning semantic segmentation of large-scale point clouds with random sampling
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref32
  doi: 10.1109/LGRS.2021.3107006
– ident: ref16
  doi: 10.1109/TGRS.2021.3128764
– ident: ref45
  doi: 10.1016/j.ins.2022.08.074
– ident: ref6
  doi: 10.1016/j.isprsjprs.2020.05.023
– ident: ref37
  doi: 10.1109/CVPR52688.2022.00831
– ident: ref1
  doi: 10.1109/TGRS.2023.3234542
SSID ssj0014517
Score 2.525696
Snippet Kernel point convolution (KPConv) can effectively represent the point features of point cloud data. However, KPConv-based methods just consider the local...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Aggregation
Airborne lasers
Attention mechanism
Coders
Convolution
Decoding
Design
Distribution
encoder-decoder structure
Feature extraction
Image segmentation
Kernel
kernel point convolution (KPConv)
Kernels
Laser applications
Lasers
Methods
Modules
Normal distribution
Point cloud compression
point cloud semantic segmentation
recurrent residual structure
Scaling
Scaling factors
Scanning
Semantic segmentation
Semantics
Three-dimensional displays
Title Recurrent Residual Dual Attention Network for Airborne Laser Scanning Point Cloud Semantic Segmentation
URI https://ieeexplore.ieee.org/document/10149028
https://www.proquest.com/docview/2830409413
Volume 61
WOSCitedRecordID wos001021331900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD44UdAH7-K8kQefhG5pm9rmcajTBxljm-BbadJMBtrJ1vn7PSeJYyAKvpRAk1D65XK-5JzvAFxxrm9UqUQgC-SqYhxiKRzzIAuTMVq3-Map6z-lvV728iL7PljdxsIYY6zzmWlR0d7ll1O9oKOyNuWVJbWRBjTSNHXBWssrA5GEPjb6JkAWEfkrzJDL9uhhMGxRnvBWHGVJRKljVzYhm1Xlx1Js95fu7j-_bA92vCHJOg75fVgz1QFsr8gLHsCmde_U80N4HdCxOgkxsYGZ2_grdkePTl07f0fWc_7gDI1Y1pnMcGhUhj3hHjdjQ-0SG7H-dII93L5NFyUbmncEZaKx8PruA5iqI3ju3o9uHwOfYiHQkRR1kPJCc5IqljpOcAYao5AxqVAWKkuF4kkpykIhh84inSS4FpZSmlIIhTwnxhfxMaxX08qcAIsLjdRPFrGKlRjzojBoTKhMSWEibJE2gX__81x7_XFKg_GWWx7CZU4w5QRT7mFqwvWyyYcT3_ir8hHhslLRQdKE829kcz8_5znJnhGzDePTX5qdwRb17k5bzmG9ni3MBWzoz3oyn13aofcFByLV7w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54RX3wLs5rHnwSOtM2dc3j8I5zyDbBt9KkmQy0k63z93tOEmUgCr6UQJO29MvlfMk53wE44Vyfq0KJQObIVUU_xFLY50EaJn20bvGOU9dvNdrt9PlZPvpgdRsLY4yxzmemTkV7ll8M9YS2ys4oryypjczCfCJEFLpwre9DA5GEPjr6PEAeEflDzJDLs95Np1unTOH1OEqTiJLHTi1DNq_Kj8nYrjDXa__8tnVY9aYkazrsN2DGlJuwMiUwuAmL1sFTj7fgpUMb6yTFxDpmbCOw2CVdmlXlPB5Z23mEMzRjWXMwws5RGtbCVW7EutqlNmKPwwE-4eJ1OClY17whLAONhZc3H8JUbsPT9VXv4jbwSRYCHUlRBQ2ea05ixVLHCY5BYxRyJhXKXKUNoXhSiCJXyKLTSCcJzoaFlKYQQiHTifFGvANz5bA0u8DiXCP5k3msYiX6PM8NmhMqVVKYCFs0asC__nmmvQI5JcJ4zSwT4TIjmDKCKfMw1eD0u8m7k9_4q_I24TJV0UFSg4MvZDM_QscZCZ8Rtw3jvV-aHcPSbe-hlbXu2vf7sExvcnsvBzBXjSbmEBb0RzUYj45sN_wET6zZNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recurrent+Residual+Dual+Attention+Network+for+Airborne+Laser+Scanning+Point+Cloud+Semantic+Segmentation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zeng%2C+Tao&rft.au=Luo%2C+Fulin&rft.au=Guo%2C+Tan&rft.au=Gong%2C+Xiuwen&rft.date=2023&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=61&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2023.3285207&rft.externalDocID=10149028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon