Recurrent Residual Dual Attention Network for Airborne Laser Scanning Point Cloud Semantic Segmentation
Kernel point convolution (KPConv) can effectively represent the point features of point cloud data. However, KPConv-based methods just consider the local information of each point, which is very difficult to characterize the intrinsic properties of airborne laser scanning (ALS) point clouds for comp...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on geoscience and remote sensing Jg. 61; S. 1 - 14 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Kernel point convolution (KPConv) can effectively represent the point features of point cloud data. However, KPConv-based methods just consider the local information of each point, which is very difficult to characterize the intrinsic properties of airborne laser scanning (ALS) point clouds for complex laser scanning conditions. Therefore, we rethink KPConv and propose a recurrent residual dual attention network (RRDAN) based on the encoder-decoder structure for the semantic segmentation of ALS point cloud data. In the encoder stage, we design an attention KPConv (AKPConv) block by using a scaling factor of batch normalization to highlight the significant channel information. Then, we use the AKPConv block to develop a recurrent residual kernel attention (RRKA) module to iteratively aggregate the local neighborhood features. In the decoder stage, we design a global and local channel attention (GLCA) module with global connection and local 1-D convolution to interact the global and local information after fusing the upsampled high-level representations and the skip-connected low-level features. In addition, to reduce the influence of the long-tailed distribution of reflection intensity, we apply gamma transformation to correct the data as a normal distribution. The proposed RRDAN can achieve diversified feature aggregation to implement the refined semantic segmentation of ALS point clouds. We evaluate our method on three ALS datasets (i.e., ISPRS, DCF2019, and LASDU) to demonstrate its performance compared to a few advanced methods. The code is available at https://github.com/SC-shendazt/RRDAN . |
|---|---|
| AbstractList | Kernel point convolution (KPConv) can effectively represent the point features of point cloud data. However, KPConv-based methods just consider the local information of each point, which is very difficult to characterize the intrinsic properties of airborne laser scanning (ALS) point clouds for complex laser scanning conditions. Therefore, we rethink KPConv and propose a recurrent residual dual attention network (RRDAN) based on the encoder–decoder structure for the semantic segmentation of ALS point cloud data. In the encoder stage, we design an attention KPConv (AKPConv) block by using a scaling factor of batch normalization to highlight the significant channel information. Then, we use the AKPConv block to develop a recurrent residual kernel attention (RRKA) module to iteratively aggregate the local neighborhood features. In the decoder stage, we design a global and local channel attention (GLCA) module with global connection and local 1-D convolution to interact the global and local information after fusing the upsampled high-level representations and the skip-connected low-level features. In addition, to reduce the influence of the long-tailed distribution of reflection intensity, we apply gamma transformation to correct the data as a normal distribution. The proposed RRDAN can achieve diversified feature aggregation to implement the refined semantic segmentation of ALS point clouds. We evaluate our method on three ALS datasets (i.e., ISPRS, DCF2019, and LASDU) to demonstrate its performance compared to a few advanced methods. The code is available at https://github.com/SC-shendazt/RRDAN . |
| Author | Zeng, Tao Gong, Xiuwen Li, Hanshan Luo, Fulin Guo, Tan Xue, Jingyun |
| Author_xml | – sequence: 1 givenname: Tao surname: Zeng fullname: Zeng, Tao email: sczt21@163.com organization: School of Mechatronic Engineering, Xi'an Technological University, Xi'an, China – sequence: 2 givenname: Fulin orcidid: 0000-0002-7696-0775 surname: Luo fullname: Luo, Fulin email: luoflyn@163.com organization: College of Computer Science, Chongqing University, Chongqing, China – sequence: 3 givenname: Tan orcidid: 0000-0001-9523-8094 surname: Guo fullname: Guo, Tan email: guot@cqupt.edu.cn organization: School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 4 givenname: Xiuwen orcidid: 0000-0002-1078-1571 surname: Gong fullname: Gong, Xiuwen email: xiuwen.gong@sydney.edu.au organization: Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia – sequence: 5 givenname: Jingyun surname: Xue fullname: Xue, Jingyun organization: School of Mechatronic Engineering, Xi'an Technological University, Xi'an, China – sequence: 6 givenname: Hanshan surname: Li fullname: Li, Hanshan organization: School of Mechatronic Engineering, Xi'an Technological University, Xi'an, China |
| BookMark | eNp9kEFPAjEQhRuDiYD-ABMPTTwvTrstuz0SVDQhagDPm253IEVosbsb47-3GzgYD16mk-l877VvQHrOOyTkmsGIMVB3q9liOeLA01HKc8khOyN9JmWewFiIHukDU-OE54pfkEFdbwGYkCzrk80CTRsCuoYusLZVq3f0viuTpolD6x19webLhw-69oFObCh9cEjnusZAl0Y7Z92GvnkbFaY731Z0iXsdSRObzT5q6E7lkpyv9a7Gq9M5JO-PD6vpUzJ_nT1PJ_PEcCWaJANtQMGYK5PKEgCxFEqWTOkyz0QJshKVLkGMc26k1FVVKYWVEKXIszRepENye9Q9BP_ZYt0UW98GFy0LnqcgQAmWxi123DLB13XAdXEIdq_Dd8Gg6PIsujyLLs_ilGdksj-Msce_NUHb3b_kzZG0iPjLiQkF8VE_vTGF4g |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1088_1361_6501_ad5bf8 crossref_primary_10_1109_TGRS_2024_3458013 crossref_primary_10_1109_TGRS_2025_3535104 crossref_primary_10_1109_JSTARS_2024_3469269 crossref_primary_10_1109_LGRS_2023_3294246 crossref_primary_10_1109_TGRS_2024_3353298 crossref_primary_10_3390_rs16010092 crossref_primary_10_1109_TGRS_2023_3348797 crossref_primary_10_1109_TGRS_2024_3525133 crossref_primary_10_3390_rs16050782 crossref_primary_10_1109_TGRS_2024_3522060 crossref_primary_10_3390_rs16183386 crossref_primary_10_1109_TGRS_2024_3392267 crossref_primary_10_1109_TGRS_2024_3484681 crossref_primary_10_1109_TGRS_2025_3572414 crossref_primary_10_1109_JSTARS_2024_3422973 crossref_primary_10_1109_TGRS_2023_3336053 |
| Cites_doi | 10.1109/WACV.2019.00167 10.1016/j.isprsjprs.2013.11.001 10.1109/CVPR52688.2022.01163 10.1109/TPAMI.2020.3005434 10.1109/TGRS.2014.2316195 10.1109/ICCV.2019.00651 10.1016/j.isprsjprs.2022.01.012 10.1109/TITS.2023.3248117 10.1109/ICCV48922.2021.00492 10.1109/CVPR.2017.16 10.1109/CVPR.2019.01054 10.1109/TPAMI.2023.3238516 10.1109/TGRS.2023.3241097 10.1109/CVPR.2018.00745 10.1007/s41064-019-00073-0 10.5194/isprsarchives-XLI-B3-655-2016 10.1007/978-3-030-58592-1_20 10.1109/TGRS.2022.3158362 10.1016/j.isprsjprs.2021.04.016 10.1109/ICCV.2017.324 10.1109/CVPR46437.2021.01236 10.1109/CVPR52688.2022.01644 10.1016/j.isprsjprs.2021.04.017 10.1109/TGRS.2022.3201902 10.1109/TITS.2023.3243643 10.1109/CVPR46437.2021.00319 10.1109/TGRS.2022.3162582 10.1016/j.isprsjprs.2020.02.020 10.1016/j.isprsjprs.2020.03.016 10.1016/j.isprsjprs.2018.03.018 10.1016/j.isprsjprs.2022.03.019 10.1007/s11801-020-9104-3 10.1145/3326362 10.1016/j.isprsjprs.2020.02.004 10.3390/ijgi9070450 10.1109/TCYB.2022.3159815 10.1109/TPAMI.2022.3159589 10.3390/s18103347 10.1109/LGRS.2021.3107006 10.1109/TGRS.2021.3128764 10.1016/j.ins.2022.08.074 10.1016/j.isprsjprs.2020.05.023 10.1109/CVPR52688.2022.00831 10.1109/TGRS.2023.3234542 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2023.3285207 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 14 |
| ExternalDocumentID | 10_1109_TGRS_2023_3285207 10149028 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2023CDJXY-039 funderid: 10.13039/501100012226 – fundername: Natural Science Foundation of Chongqing grantid: CSTB2022NSCQ-MSX0452 funderid: 10.13039/501100005230 – fundername: National Natural Science Foundation of China grantid: 62071340; 62201109 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c294t-70ac090629c35b00eeb495b19ab874b05d4dab04682c55addd99ed44b4873ab03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001021331900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 10:17:57 EDT 2025 Sat Nov 29 03:32:23 EST 2025 Tue Nov 18 22:11:35 EST 2025 Wed Aug 27 02:25:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-70ac090629c35b00eeb495b19ab874b05d4dab04682c55addd99ed44b4873ab03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1078-1571 0000-0001-9523-8094 0000-0002-7696-0775 |
| PQID | 2830409413 |
| PQPubID | 85465 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TGRS_2023_3285207 ieee_primary_10149028 proquest_journals_2830409413 crossref_citationtrail_10_1109_TGRS_2023_3285207 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 yan (ref40) 2014; 52 ref17 ref16 ref38 ref19 ref18 liu (ref39) 2021 ref46 ref23 ref45 ref26 ref48 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 qi (ref24) 2017 ref28 gao (ref7) 2023; 24 ref27 ref29 ref8 ref9 ref4 ref3 ref6 ref5 hu (ref25) 2022; 44 |
| References_xml | – ident: ref43 doi: 10.1109/WACV.2019.00167 – ident: ref42 doi: 10.1016/j.isprsjprs.2013.11.001 – ident: ref48 doi: 10.1109/CVPR52688.2022.01163 – ident: ref4 doi: 10.1109/TPAMI.2020.3005434 – volume: 52 start-page: 7658 year: 2014 ident: ref40 article-title: Radiometric correction and normalization of airborne LiDAR intensity data for improving land-cover classification publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2014.2316195 – ident: ref30 doi: 10.1109/ICCV.2019.00651 – ident: ref26 doi: 10.1016/j.isprsjprs.2022.01.012 – ident: ref10 doi: 10.1109/TITS.2023.3248117 – ident: ref36 doi: 10.1109/ICCV48922.2021.00492 – ident: ref17 doi: 10.1109/CVPR.2017.16 – start-page: 1 year: 2017 ident: ref24 article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space publication-title: Proc 31st Conf Neural Inf Process Syst – ident: ref29 doi: 10.1109/CVPR.2019.01054 – ident: ref22 doi: 10.1109/TPAMI.2023.3238516 – ident: ref2 doi: 10.1109/TGRS.2023.3241097 – ident: ref38 doi: 10.1109/CVPR.2018.00745 – ident: ref18 doi: 10.1007/s41064-019-00073-0 – ident: ref5 doi: 10.5194/isprsarchives-XLI-B3-655-2016 – ident: ref35 doi: 10.1007/978-3-030-58592-1_20 – ident: ref47 doi: 10.1109/TGRS.2022.3158362 – ident: ref13 doi: 10.1016/j.isprsjprs.2021.04.016 – ident: ref46 doi: 10.1109/ICCV.2017.324 – ident: ref19 doi: 10.1109/CVPR46437.2021.01236 – ident: ref20 doi: 10.1109/CVPR52688.2022.01644 – start-page: 1 year: 2021 ident: ref39 article-title: NAM: Normalization-based attention module publication-title: Proc 35th Conf Neural Inf Process Syst – ident: ref21 doi: 10.1016/j.isprsjprs.2021.04.017 – ident: ref8 doi: 10.1109/TGRS.2022.3201902 – ident: ref14 doi: 10.1109/TITS.2023.3243643 – volume: 24 start-page: 2158 year: 2023 ident: ref7 article-title: LFT-Net: Local feature transformer network for point clouds analysis publication-title: IEEE Trans Intell Transp Syst – ident: ref34 doi: 10.1109/CVPR46437.2021.00319 – ident: ref33 doi: 10.1109/TGRS.2022.3162582 – ident: ref3 doi: 10.1016/j.isprsjprs.2020.02.020 – ident: ref23 doi: 10.1016/j.isprsjprs.2020.03.016 – ident: ref11 doi: 10.1016/j.isprsjprs.2018.03.018 – ident: ref27 doi: 10.1016/j.isprsjprs.2022.03.019 – ident: ref41 doi: 10.1007/s11801-020-9104-3 – ident: ref28 doi: 10.1145/3326362 – ident: ref9 doi: 10.1016/j.isprsjprs.2020.02.004 – ident: ref44 doi: 10.3390/ijgi9070450 – ident: ref31 doi: 10.1109/TCYB.2022.3159815 – ident: ref12 doi: 10.1109/TPAMI.2022.3159589 – ident: ref15 doi: 10.3390/s18103347 – volume: 44 start-page: 8338 year: 2022 ident: ref25 article-title: Learning semantic segmentation of large-scale point clouds with random sampling publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref32 doi: 10.1109/LGRS.2021.3107006 – ident: ref16 doi: 10.1109/TGRS.2021.3128764 – ident: ref45 doi: 10.1016/j.ins.2022.08.074 – ident: ref6 doi: 10.1016/j.isprsjprs.2020.05.023 – ident: ref37 doi: 10.1109/CVPR52688.2022.00831 – ident: ref1 doi: 10.1109/TGRS.2023.3234542 |
| SSID | ssj0014517 |
| Score | 2.525696 |
| Snippet | Kernel point convolution (KPConv) can effectively represent the point features of point cloud data. However, KPConv-based methods just consider the local... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Aggregation Airborne lasers Attention mechanism Coders Convolution Decoding Design Distribution encoder-decoder structure Feature extraction Image segmentation Kernel kernel point convolution (KPConv) Kernels Laser applications Lasers Methods Modules Normal distribution Point cloud compression point cloud semantic segmentation recurrent residual structure Scaling Scaling factors Scanning Semantic segmentation Semantics Three-dimensional displays |
| Title | Recurrent Residual Dual Attention Network for Airborne Laser Scanning Point Cloud Semantic Segmentation |
| URI | https://ieeexplore.ieee.org/document/10149028 https://www.proquest.com/docview/2830409413 |
| Volume | 61 |
| WOSCitedRecordID | wos001021331900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD44UdAH7-K8kQefhG5pm9rmcajTBxljm-BbadJMBtrJ1vn7PSeJYyAKvpRAk1D65XK-5JzvAFxxrm9UqUQgC-SqYhxiKRzzIAuTMVq3-Map6z-lvV728iL7PljdxsIYY6zzmWlR0d7ll1O9oKOyNuWVJbWRBjTSNHXBWssrA5GEPjb6JkAWEfkrzJDL9uhhMGxRnvBWHGVJRKljVzYhm1Xlx1Js95fu7j-_bA92vCHJOg75fVgz1QFsr8gLHsCmde_U80N4HdCxOgkxsYGZ2_grdkePTl07f0fWc_7gDI1Y1pnMcGhUhj3hHjdjQ-0SG7H-dII93L5NFyUbmncEZaKx8PruA5iqI3ju3o9uHwOfYiHQkRR1kPJCc5IqljpOcAYao5AxqVAWKkuF4kkpykIhh84inSS4FpZSmlIIhTwnxhfxMaxX08qcAIsLjdRPFrGKlRjzojBoTKhMSWEibJE2gX__81x7_XFKg_GWWx7CZU4w5QRT7mFqwvWyyYcT3_ir8hHhslLRQdKE829kcz8_5znJnhGzDePTX5qdwRb17k5bzmG9ni3MBWzoz3oyn13aofcFByLV7w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54RX3wLs5rHnwSOtM2dc3j8I5zyDbBt9KkmQy0k63z93tOEmUgCr6UQJO29MvlfMk53wE44Vyfq0KJQObIVUU_xFLY50EaJn20bvGOU9dvNdrt9PlZPvpgdRsLY4yxzmemTkV7ll8M9YS2ys4oryypjczCfCJEFLpwre9DA5GEPjr6PEAeEflDzJDLs95Np1unTOH1OEqTiJLHTi1DNq_Kj8nYrjDXa__8tnVY9aYkazrsN2DGlJuwMiUwuAmL1sFTj7fgpUMb6yTFxDpmbCOw2CVdmlXlPB5Z23mEMzRjWXMwws5RGtbCVW7EutqlNmKPwwE-4eJ1OClY17whLAONhZc3H8JUbsPT9VXv4jbwSRYCHUlRBQ2ea05ixVLHCY5BYxRyJhXKXKUNoXhSiCJXyKLTSCcJzoaFlKYQQiHTifFGvANz5bA0u8DiXCP5k3msYiX6PM8NmhMqVVKYCFs0asC__nmmvQI5JcJ4zSwT4TIjmDKCKfMw1eD0u8m7k9_4q_I24TJV0UFSg4MvZDM_QscZCZ8Rtw3jvV-aHcPSbe-hlbXu2vf7sExvcnsvBzBXjSbmEBb0RzUYj45sN_wET6zZNg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recurrent+Residual+Dual+Attention+Network+for+Airborne+Laser+Scanning+Point+Cloud+Semantic+Segmentation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zeng%2C+Tao&rft.au=Luo%2C+Fulin&rft.au=Guo%2C+Tan&rft.au=Gong%2C+Xiuwen&rft.date=2023&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=61&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2023.3285207&rft.externalDocID=10149028 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |