Joint Subcarrier and Power Allocation for Uplink Integrated Sensing and Communication System
Integrated sensing and communication (ISAC) supporting various emerging applications has become one of the leading technologies in sixth generation (6G) networks. This paper focuses on the uplink orthogonal frequency division multiplex (OFDM) ISAC system. With the help of multiple vehicles, the base...
Saved in:
| Published in: | IEEE sensors journal Vol. 23; no. 24; p. 1 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
15.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Integrated sensing and communication (ISAC) supporting various emerging applications has become one of the leading technologies in sixth generation (6G) networks. This paper focuses on the uplink orthogonal frequency division multiplex (OFDM) ISAC system. With the help of multiple vehicles, the base station (BS) can collect information about its surroundings through the uplink signals. Nevertheless, the rapid growth of the communication and sensing sectors has led to a growing scarcity of spectrum resources, resulting in a tradeoff between the performance of sensing and communication subsystems. To address this challenge, our paper introduces an efficient joint subcarrier and power allocation strategy for the uplink OFDM ISAC system. The critical issue is to minimize the Cramer-Rao lower bound (CRLB) by sparsely selecting the best possible sensing subcarriers and allocating the optimal transmit power to the corresponding subcarriers while satisfying the communication data rate (CDR) requirement. The resulting optimization problem is formulated as a nonconvex problem. After convex relaxation reformulation, we adopt the cyclic minimization algorithm (CMA) to iteratively solve the subcarrier selection and power allocation problems. Finally, numerical results suggest that the proposed joint optimization strategy is more effective than traditional methods. |
|---|---|
| AbstractList | Integrated sensing and communication (ISAC) supporting various emerging applications has become one of the leading technologies in sixth-generation (6G) networks. This article focuses on the uplink orthogonal frequency division multiplexing (OFDM) ISAC system. With the help of multiple vehicles, the base station (BS) can collect information about its surroundings through the uplink signals. Nevertheless, the rapid growth of the communication and sensing sectors has led to a growing scarcity of spectrum resources, resulting in a trade-off between the performance of sensing and communication subsystems. To address this challenge, our paper introduces an efficient joint subcarrier and power allocation strategy for the uplink OFDM ISAC system. The critical issue is to minimize the Cramer–Rao lower bound (CRLB) by sparsely selecting the best possible sensing subcarriers and allocating the optimal transmit power to the corresponding subcarriers while satisfying the communication data rate (CDR) requirement. The resulting optimization problem (OP) is formulated as a nonconvex problem. After convex relaxation reformulation, we adopt the cyclic minimization algorithm (CMA) to iteratively solve the subcarrier selection and power allocation problems. Finally, numerical results suggest that the proposed joint optimization strategy is more effective than traditional methods. Integrated sensing and communication (ISAC) supporting various emerging applications has become one of the leading technologies in sixth generation (6G) networks. This paper focuses on the uplink orthogonal frequency division multiplex (OFDM) ISAC system. With the help of multiple vehicles, the base station (BS) can collect information about its surroundings through the uplink signals. Nevertheless, the rapid growth of the communication and sensing sectors has led to a growing scarcity of spectrum resources, resulting in a tradeoff between the performance of sensing and communication subsystems. To address this challenge, our paper introduces an efficient joint subcarrier and power allocation strategy for the uplink OFDM ISAC system. The critical issue is to minimize the Cramer-Rao lower bound (CRLB) by sparsely selecting the best possible sensing subcarriers and allocating the optimal transmit power to the corresponding subcarriers while satisfying the communication data rate (CDR) requirement. The resulting optimization problem is formulated as a nonconvex problem. After convex relaxation reformulation, we adopt the cyclic minimization algorithm (CMA) to iteratively solve the subcarrier selection and power allocation problems. Finally, numerical results suggest that the proposed joint optimization strategy is more effective than traditional methods. |
| Author | Li, Yiheng Wei, Zhiqing Feng, Zhiyong |
| Author_xml | – sequence: 1 givenname: Yiheng orcidid: 0000-0001-5868-2276 surname: Li fullname: Li, Yiheng organization: Ministry of Education, School of Information and Communication Engineering, Key Laboratory of Universal Wireless Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing, China – sequence: 2 givenname: Zhiqing orcidid: 0000-0001-7940-2739 surname: Wei fullname: Wei, Zhiqing organization: Ministry of Education, School of Information and Communication Engineering, Key Laboratory of Universal Wireless Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing, China – sequence: 3 givenname: Zhiyong orcidid: 0000-0001-5322-222X surname: Feng fullname: Feng, Zhiyong organization: Ministry of Education, School of Information and Communication Engineering, Key Laboratory of Universal Wireless Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing, China |
| BookMark | eNp9kEFLwzAUx4MouE0_gOCh4LkzadqmOY4xdWOoUAcehJKmLyOzS2aaIvv2ttsO4sHT-x_-v_d4vyE6N9YAQjcEjwnB_H6Rz57HEY7omFKKOU3P0IAkSRYSFmfnfaY4jCl7v0TDptlgTDhL2AB9LKw2PsjbUgrnNLhAmCp4td9dmtS1lcJrawJlXbDa1dp8BnPjYe2EhyrIwTTarA_I1G63rdGnfr5vPGyv0IUSdQPXpzlCq4fZ2_QpXL48zqeTZSgjHvswVVLxDJMqURQrSIUgHCQQAIZVjJMylYyIsspKygTnKa8UBZnFGZSkJBDTEbo77t05-9VC44uNbZ3pThYRxxGhEY5Z1yLHlnS2aRyoYuf0Vrh9QXDRSyx6iUUvsThJ7Bj2h5HaH170Tuj6X_L2SGoA-HWJkgynGf0BG_WC4g |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1109_TWC_2024_3453902 crossref_primary_10_1109_TWC_2025_3556788 crossref_primary_10_1109_LCOMM_2024_3479233 crossref_primary_10_1109_JSEN_2024_3427673 crossref_primary_10_1109_TCE_2024_3446803 crossref_primary_10_1109_TVT_2025_3548138 crossref_primary_10_3390_s25030778 crossref_primary_10_1016_j_dsp_2025_105563 crossref_primary_10_1109_TVT_2025_3553393 crossref_primary_10_1109_JIOT_2024_3506162 crossref_primary_10_1109_JIOT_2024_3403972 crossref_primary_10_1109_JPROC_2024_3449807 |
| Cites_doi | 10.1109/TAES.2019.2908739 10.1109/IEEECONF44664.2019.9049009 10.1109/TVT.2020.3002899 10.1109/TWC.2021.3091806 10.1109/TAES.2022.3227526 10.1109/MWC.2023.10077115 10.1109/TAES.2019.2939611 10.1016/j.sigpro.2019.04.003 10.1109/MSP.2004.1267055 10.1109/TSP.2021.3057499 10.1109/LCOMM.2022.3216865 10.1109/TPWRS.2011.2160974 10.1049/iet-com.2020.0384 10.1109/ICCWorkshops49005.2020.9145285 10.1109/JSYST.2020.2984637 10.1109/WCSP55476.2022.10039359 10.1109/TSP.2016.2566610 10.1109/JSTSP.2014.2331033 10.1109/RADAR.2016.7485103 10.1109/TWC.2023.3244195 10.1109/TSP.2017.2659650 10.1109/TSP.2015.2505681 10.1109/TAP.2017.2751672 10.1109/TSP.2015.2488584 10.1109/TWC.2019.2939816 10.1109/ICCC55456.2022.9880826 10.1109/TCOMM.2020.3044616 10.1109/TSP.2021.3076894 10.1109/TAES.2018.2884806 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2023.3330936 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_JSEN_2023_3330936 10318068 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2020YFA0711302 funderid: 10.13039/501100012166 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c294t-6fcf9801d5f30fe6aa19ece1ee70f405b6c71abd8b37a9969df3ec848eb1b1e43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001161670600042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 08:41:34 EDT 2025 Tue Nov 18 21:02:35 EST 2025 Sat Nov 29 06:39:47 EST 2025 Wed Aug 27 02:37:42 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-6fcf9801d5f30fe6aa19ece1ee70f405b6c71abd8b37a9969df3ec848eb1b1e43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7940-2739 0000-0001-5322-222X 0000-0001-5868-2276 |
| PQID | 2902132047 |
| PQPubID | 75733 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_2902132047 crossref_citationtrail_10_1109_JSEN_2023_3330936 crossref_primary_10_1109_JSEN_2023_3330936 ieee_primary_10318068 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-15 |
| PublicationDateYYYYMMDD | 2023-12-15 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref31 ref30 ref11 ref10 ref32 ref1 (ref2) 2021 ref17 ref16 ref19 ref18 Zhong (ref14) 2022 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Giugno (ref15) |
| References_xml | – ident: ref21 doi: 10.1109/TAES.2019.2908739 – ident: ref12 doi: 10.1109/IEEECONF44664.2019.9049009 – ident: ref32 doi: 10.1109/TVT.2020.3002899 – ident: ref16 doi: 10.1109/TWC.2021.3091806 – ident: ref6 doi: 10.1109/TAES.2022.3227526 – ident: ref1 doi: 10.1109/MWC.2023.10077115 – ident: ref9 doi: 10.1109/TAES.2019.2939611 – ident: ref30 doi: 10.1016/j.sigpro.2019.04.003 – ident: ref23 doi: 10.1109/MSP.2004.1267055 – ident: ref3 doi: 10.1109/TSP.2021.3057499 – ident: ref26 doi: 10.1109/LCOMM.2022.3216865 – ident: ref29 doi: 10.1109/TPWRS.2011.2160974 – ident: ref10 doi: 10.1049/iet-com.2020.0384 – ident: ref8 doi: 10.1109/ICCWorkshops49005.2020.9145285 – ident: ref13 doi: 10.1109/JSYST.2020.2984637 – ident: ref4 doi: 10.1109/WCSP55476.2022.10039359 – ident: ref25 doi: 10.1109/TSP.2016.2566610 – year: 2021 ident: ref2 article-title: White paper on 6G vision and candidate technologies publication-title: IMT-2030 (6G) Promotion Group – ident: ref31 doi: 10.1109/JSTSP.2014.2331033 – ident: ref17 doi: 10.1109/RADAR.2016.7485103 – ident: ref5 doi: 10.1109/TWC.2023.3244195 – ident: ref11 doi: 10.1109/TSP.2017.2659650 – ident: ref22 doi: 10.1109/TSP.2015.2505681 – ident: ref24 doi: 10.1109/TAP.2017.2751672 – year: 2022 ident: ref14 article-title: Performance optimization and parameters estimation for MIMO-OFDM dual-functional communication-radar systems publication-title: arXiv:2210.06951 – start-page: 1 volume-title: Proc. 13th Eur. Signal Process. Conf. ident: ref15 article-title: Optimum pulse shaping for delay estimation in satellite positioning – ident: ref20 doi: 10.1109/TSP.2015.2488584 – ident: ref7 doi: 10.1109/TWC.2019.2939816 – ident: ref18 doi: 10.1109/ICCC55456.2022.9880826 – ident: ref19 doi: 10.1109/TCOMM.2020.3044616 – ident: ref27 doi: 10.1109/TSP.2021.3076894 – ident: ref28 doi: 10.1109/TAES.2018.2884806 |
| SSID | ssj0019757 |
| Score | 2.4681087 |
| Snippet | Integrated sensing and communication (ISAC) supporting various emerging applications has become one of the leading technologies in sixth generation (6G)... Integrated sensing and communication (ISAC) supporting various emerging applications has become one of the leading technologies in sixth-generation (6G)... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Communication Communication Data Rate Communications systems Cramer-Rao Lower Bound Cyclic Minimization Algorithm Estimation Integrated Sensing and Communication Joint Subcarrier and Power Allocation Lower bounds Minimization OFDM Optimization Orthogonal Frequency Division Multiplexing Resource management Sensors Subcarriers Subsystems Uplink Uplinking |
| Title | Joint Subcarrier and Power Allocation for Uplink Integrated Sensing and Communication System |
| URI | https://ieeexplore.ieee.org/document/10318068 https://www.proquest.com/docview/2902132047 |
| Volume | 23 |
| WOSCitedRecordID | wos001161670600042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH5oEdSDa8W6MQdPQuqkk8xyLGJRD0VQoQchJLOoWFLpIvjvnTdJiyIK3nKYN4R8M2_JWz6AU5kqqQoro8Qflijx6i8qjImj1DjKFJdCGx3IJkS_LwcDdVs3q4deGGttKD6zbXwMuXwz0jP8VXaOlASScrkMy0KIqllrkTJQIoz19DeYRgkTgzqFGVN1fnN32W8jT3ibMcz88W9GKLCq_FDFwb70Nv_5ZluwUTuSpFshvw1LttyB9S_jBXdgtWY4f_7Yhceb0Us5JV5P6HyMLHUkLw25RY400h2iRUOEiHdhyQM26b6S6_kgCUPusMq9fAoi3zpKSDXwvAkPvcv7i6uoZlaIdEcl04g77ZS3TSZ1jDrL8zxWVtvYWkGdd-EKrkWcF0YWTOQ-IlLGMatlIr1mL2KbsD1olKPS7gPhUqs8KYRz2vhQ23srNqU5dZz7yNso3gI6_9SZrseOI_vFMAvhB1UZopMhOlmNTgvOFiJv1cyNvxY3EY4vCyskWnA0BzSrr-Uk6yjv0rAOTcTBL2KHsIa7Y8FKnB5BYzqe2WNY0e_Tl8n4JJy4T_lF05E |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS-RAFH5oO6AedNywXWbq4GkgbaWrUsuxEcVtGkGFPgghqUVFSUvbCv5761XSooiCtxzqUSFf1Vvylg9gR2Va6dKphIfDkvCg_pLS2jTJrKdMCyWNNZFsQvb7ajDQZ02zeuyFcc7F4jPXwceYy7dD84S_ynaRkkBRoaZhJuO8m9btWm9JAy3jYM9wh2nCmRw0ScyU6t3j8_1-B5nCO4xh7k98MEORV-WTMo4W5mDxh-_2GxYaV5L0auyXYMpVyzD_bsDgMsw2HOc3LytwdTy8rcYkaApTjJCnjhSVJWfIkkZ692jTECMSnFhyiW26d-RoMkrCknOsc6-uo8iHnhJSjzxfhcuD_Yu9w6ThVkhMV_NxIrzxOlgnm3lGvRNFkWpnXOqcpD44caUwMi1Kq0omixATaeuZM4qroNvL1HG2Bq1qWLl1IEIZXfBSem9sCLaDv-IyWlAvRIi9rRZtoJNPnZtm8DjyX9znMQChOkd0ckQnb9Bpw783kYd66sZ3i1cRjncLayTasDUBNG8u5mPe1cGpYV3K5cYXYn9h9vDi_2l-etQ_2YQ53AnLV9JsC1rj0ZPbhl_meXz7OPoTT98rIhHW2A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Subcarrier+and+Power+Allocation+for+Uplink+Integrated+Sensing+and+Communication+System&rft.jtitle=IEEE+sensors+journal&rft.au=Li%2C+Yiheng&rft.au=Wei%2C+Zhiqing&rft.au=Feng%2C+Zhiyong&rft.date=2023-12-15&rft.pub=IEEE&rft.issn=1530-437X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSEN.2023.3330936&rft.externalDocID=10318068 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |