Unifying Large Language Models and Knowledge Graphs: A Roadmap

Large language models (LLMs), such as ChatGPT and GPT4, are making new waves in the field of natural language processing and artificial intelligence, due to their emergent ability and generalizability. However, LLMs are black-box models, which often fall short of capturing and accessing factual know...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on knowledge and data engineering Ročník 36; číslo 7; s. 3580 - 3599
Hlavní autori: Pan, Shirui, Luo, Linhao, Wang, Yufei, Chen, Chen, Wang, Jiapu, Wu, Xindong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1041-4347, 1558-2191
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Large language models (LLMs), such as ChatGPT and GPT4, are making new waves in the field of natural language processing and artificial intelligence, due to their emergent ability and generalizability. However, LLMs are black-box models, which often fall short of capturing and accessing factual knowledge. In contrast, Knowledge Graphs (KGs), Wikipedia, and Huapu for example, are structured knowledge models that explicitly store rich factual knowledge. KGs can enhance LLMs by providing external knowledge for inference and interpretability. Meanwhile, KGs are difficult to construct and evolve by nature, which challenges the existing methods in KGs to generate new facts and represent unseen knowledge. Therefore, it is complementary to unify LLMs and KGs together and, simultaneously, leverage their advantages. In this article, we present a forward-looking roadmap for the unification of LLMs and KGs. Our roadmap consists of three general frameworks, namely: 1) KG-enhanced LLMs, which incorporate KGs during the pre-training and inference phases of LLMs, or for the purpose of enhancing understanding of the knowledge learned by LLMs; 2) LLM-augmented KGs, that leverage LLMs for different KG tasks such as embedding, completion, construction, graph-to-text generation, and question answering; and 3) Synergized LLMs + KGs , in which LLMs and KGs play equal roles and work in a mutually beneficial way to enhance both LLMs and KGs for bidirectional reasoning driven by both data and knowledge. We review and summarize existing efforts within these three frameworks in our roadmap and pinpoint their future research directions.
AbstractList Large language models (LLMs), such as ChatGPT and GPT4, are making new waves in the field of natural language processing and artificial intelligence, due to their emergent ability and generalizability. However, LLMs are black-box models, which often fall short of capturing and accessing factual knowledge. In contrast, Knowledge Graphs (KGs), Wikipedia, and Huapu for example, are structured knowledge models that explicitly store rich factual knowledge. KGs can enhance LLMs by providing external knowledge for inference and interpretability. Meanwhile, KGs are difficult to construct and evolve by nature, which challenges the existing methods in KGs to generate new facts and represent unseen knowledge. Therefore, it is complementary to unify LLMs and KGs together and, simultaneously, leverage their advantages. In this article, we present a forward-looking roadmap for the unification of LLMs and KGs. Our roadmap consists of three general frameworks, namely: 1) KG-enhanced LLMs, which incorporate KGs during the pre-training and inference phases of LLMs, or for the purpose of enhancing understanding of the knowledge learned by LLMs; 2) LLM-augmented KGs, that leverage LLMs for different KG tasks such as embedding, completion, construction, graph-to-text generation, and question answering; and 3) Synergized LLMs + KGs , in which LLMs and KGs play equal roles and work in a mutually beneficial way to enhance both LLMs and KGs for bidirectional reasoning driven by both data and knowledge. We review and summarize existing efforts within these three frameworks in our roadmap and pinpoint their future research directions.
Author Wang, Yufei
Pan, Shirui
Chen, Chen
Wang, Jiapu
Luo, Linhao
Wu, Xindong
Author_xml – sequence: 1
  givenname: Shirui
  orcidid: 0000-0003-0794-527X
  surname: Pan
  fullname: Pan, Shirui
  email: s.pan@griffith.edu.au
  organization: School of Information and Communication Technology and Institute for Integrated and Intelligent Systems (IIIS), Griffith University, Nathan, QLD, Australia
– sequence: 2
  givenname: Linhao
  orcidid: 0000-0003-0027-942X
  surname: Luo
  fullname: Luo, Linhao
  email: linhao.luo@monash.edu
  organization: Department of Data Science and AI, Monash University, Melbourne, VIC, Australia
– sequence: 3
  givenname: Yufei
  surname: Wang
  fullname: Wang, Yufei
  email: garyyufei@gmail.com
  organization: Department of Data Science and AI, Monash University, Melbourne, VIC, Australia
– sequence: 4
  givenname: Chen
  orcidid: 0000-0002-4637-9250
  surname: Chen
  fullname: Chen, Chen
  email: s190009@ntu.edu.sg
  organization: Nanyang Technological University, Singapore
– sequence: 5
  givenname: Jiapu
  orcidid: 0000-0001-7639-5289
  surname: Wang
  fullname: Wang, Jiapu
  email: jpwang@emails.bjut.edu.cn
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China
– sequence: 6
  givenname: Xindong
  orcidid: 0000-0003-2396-1704
  surname: Wu
  fullname: Wu, Xindong
  email: xwu@hfut.edu.cn
  organization: Key Laboratory of Knowledge Engineering with Big Data (the Ministry of Education of China), Hefei University of Technology, Hefei, China
BookMark eNp9kEFLAzEQhYNUsK3-AMHDguetk02yu_EglFqrtCJIew5JNqlbttmabJH-e1PqQTx4mRlm3jcP3gD1XOsMQtcYRhgDv1vOH6ejDDI6IoRlGOAM9TFjZZphjntxBopTSmhxgQYhbACgLErcRw8rV9tD7dbJQvq1idWt9zIOr21lmpBIVyVz1341porLmZe7j3CfjJP3VlZbubtE51Y2wVz99CFaPU2Xk-d08TZ7mYwXqc447dJcG2UlN1JJSRRgXRCeA1isNONWq4oxbDXoSgEtmWIWeDzInKmKZxEmQ3R7-rvz7efehE5s2r130VIQyGmBCSE0qvBJpX0bgjdW7Hy9lf4gMIhjTOIYkzjGJH5iikzxh9F1J7u6dZ2XdfMveXMia2PMLydSFgVm5Bs9pXZz
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_autcon_2025_106237
crossref_primary_10_1016_j_fss_2024_109117
crossref_primary_10_1016_j_knosys_2024_112837
crossref_primary_10_1007_s10844_025_00953_5
crossref_primary_10_3390_fi16120461
crossref_primary_10_1016_j_hcc_2025_100315
crossref_primary_10_1007_s13218_024_00850_z
crossref_primary_10_1007_s10489_025_06381_w
crossref_primary_10_1007_s41060_025_00752_9
crossref_primary_10_14778_3748191_3748194
crossref_primary_10_1007_s11334_024_00591_0
crossref_primary_10_1109_TKDE_2024_3486747
crossref_primary_10_1016_j_aei_2025_103212
crossref_primary_10_3390_info15080509
crossref_primary_10_1145_3671148
crossref_primary_10_1145_3764584
crossref_primary_10_1016_j_aei_2025_103217
crossref_primary_10_1109_TII_2024_3366977
crossref_primary_10_1016_j_neucom_2025_131269
crossref_primary_10_3390_aerospace12040325
crossref_primary_10_2196_65523
crossref_primary_10_3389_frai_2024_1247712
crossref_primary_10_1093_bioadv_vbae099
crossref_primary_10_3390_math12152318
crossref_primary_10_1145_3763241
crossref_primary_10_1109_TIM_2025_3550999
crossref_primary_10_2196_56128
crossref_primary_10_3390_ijgi13070255
crossref_primary_10_1109_TKDE_2025_3538110
crossref_primary_10_1016_j_procs_2024_09_187
crossref_primary_10_1002_eng2_70368
crossref_primary_10_1007_s11596_024_2929_4
crossref_primary_10_1007_s40264_025_01594_x
crossref_primary_10_1007_s12136_024_00619_x
crossref_primary_10_3390_fi16080260
crossref_primary_10_1109_TFUZZ_2024_3449317
crossref_primary_10_3389_frma_2024_1364053
crossref_primary_10_1016_j_ipm_2025_104082
crossref_primary_10_1038_s44259_025_00084_5
crossref_primary_10_1016_j_aei_2023_102333
crossref_primary_10_1016_j_aiia_2025_05_006
crossref_primary_10_1109_ACCESS_2025_3582853
crossref_primary_10_1016_j_knosys_2024_112940
crossref_primary_10_1007_s10489_024_05802_6
crossref_primary_10_1080_17538947_2025_2510566
crossref_primary_10_1515_iwp_2024_2052
crossref_primary_10_1007_s40747_024_01690_y
crossref_primary_10_1109_TKDE_2025_3559023
crossref_primary_10_1016_j_asoc_2025_113147
crossref_primary_10_1002_mco2_70247
crossref_primary_10_1145_3742420
crossref_primary_10_1016_j_asoc_2024_112421
crossref_primary_10_1016_j_datak_2025_102504
crossref_primary_10_1109_ACCESS_2025_3609662
crossref_primary_10_1007_s11227_023_05817_9
crossref_primary_10_1145_3687273_3687280
crossref_primary_10_1016_j_neucom_2025_131118
crossref_primary_10_1108_IDD_09_2024_0141
crossref_primary_10_1016_j_knosys_2024_112155
crossref_primary_10_1016_j_ipm_2024_103920
crossref_primary_10_1109_MWC_001_2400315
crossref_primary_10_1016_j_oregeorev_2025_106638
crossref_primary_10_1016_j_physa_2025_130789
crossref_primary_10_1016_j_neucom_2025_131230
crossref_primary_10_1007_s10115_025_02434_1
crossref_primary_10_1007_s41060_025_00797_w
crossref_primary_10_3390_app142411683
crossref_primary_10_1007_s40747_025_02003_7
crossref_primary_10_1016_j_aei_2025_103134
crossref_primary_10_1007_s12273_025_1235_9
crossref_primary_10_1016_j_ymben_2024_11_006
crossref_primary_10_1109_TKDE_2025_3581606
crossref_primary_10_1016_j_drudis_2024_104272
crossref_primary_10_1097_CM9_0000000000003302
crossref_primary_10_3389_fpls_2025_1583344
crossref_primary_10_1016_j_knosys_2025_114426
crossref_primary_10_1109_TKDE_2024_3464516
crossref_primary_10_1016_j_knosys_2025_114307
crossref_primary_10_1109_JIOT_2024_3522191
crossref_primary_10_1016_j_neunet_2025_107389
crossref_primary_10_1145_3749116_3749122
crossref_primary_10_3389_fcomp_2025_1590632
crossref_primary_10_1007_s41060_024_00699_3
crossref_primary_10_1371_journal_pone_0318644
crossref_primary_10_1016_j_procs_2024_10_206
crossref_primary_10_1016_j_compind_2025_104329
crossref_primary_10_1016_j_procs_2025_08_119
crossref_primary_10_1016_j_inffus_2024_102721
crossref_primary_10_1109_TPAMI_2025_3548729
crossref_primary_10_1177_15705838241307486
crossref_primary_10_1007_s41019_025_00285_y
crossref_primary_10_1016_j_asoc_2024_112401
crossref_primary_10_1057_s41599_024_03407_5
crossref_primary_10_3390_app15105719
crossref_primary_10_1016_j_aei_2025_103705
crossref_primary_10_3390_electronics13071210
crossref_primary_10_1002_asi_70004
crossref_primary_10_1016_j_aej_2025_04_089
crossref_primary_10_1145_3749116_3749132
crossref_primary_10_1007_s11280_024_01297_w
crossref_primary_10_1186_s13040_025_00466_5
crossref_primary_10_1088_2631_7990_ada8e4
crossref_primary_10_1016_j_aei_2025_103235
crossref_primary_10_1016_j_websem_2025_100862
crossref_primary_10_1080_09544828_2024_2355758
crossref_primary_10_1016_j_ipm_2025_104281
crossref_primary_10_1007_s11430_024_1446_9
crossref_primary_10_1016_j_enbuild_2025_115515
crossref_primary_10_1016_j_knosys_2025_114448
crossref_primary_10_1002_sys_21810
crossref_primary_10_1016_j_knosys_2025_113118
crossref_primary_10_1016_j_atech_2025_101094
crossref_primary_10_1016_j_jss_2025_112629
crossref_primary_10_1007_s44163_024_00175_8
crossref_primary_10_1016_j_compbiomed_2024_109100
crossref_primary_10_1016_j_aei_2025_103244
crossref_primary_10_2478_jaiscr_2025_0014
crossref_primary_10_3390_electronics14112102
crossref_primary_10_3390_math13142244
crossref_primary_10_3847_1538_4365_ad7c43
crossref_primary_10_3390_electronics13214195
crossref_primary_10_3390_app15094989
crossref_primary_10_1680_jsmic_24_00035
crossref_primary_10_1109_JIOT_2025_3586658
crossref_primary_10_1016_j_compchemeng_2025_109318
crossref_primary_10_1109_TGRS_2025_3532349
crossref_primary_10_1093_jamia_ocaf006
crossref_primary_10_1109_ACCESS_2025_3586278
crossref_primary_10_1016_j_pbi_2024_102665
crossref_primary_10_1109_TKDE_2025_3538618
crossref_primary_10_1186_s40537_025_01094_w
crossref_primary_10_1007_s10489_024_06211_5
crossref_primary_10_1109_TKDE_2025_3581806
crossref_primary_10_1109_TEVC_2024_3506731
crossref_primary_10_1016_j_aei_2025_103613
crossref_primary_10_1016_j_visinf_2025_100269
crossref_primary_10_1162_tacl_a_00731
crossref_primary_10_32634_0869_8155_2025_395_06_162_166
crossref_primary_10_1186_s10033_025_01275_x
crossref_primary_10_3390_math13060949
crossref_primary_10_1016_j_inffus_2024_102868
crossref_primary_10_3390_fi17090414
crossref_primary_10_1080_17538947_2024_2398063
crossref_primary_10_1109_ACCESS_2024_3518952
crossref_primary_10_3390_a18070445
crossref_primary_10_1007_s10844_025_00945_5
crossref_primary_10_1142_S0219686725500180
crossref_primary_10_1136_jitc_2023_007841
crossref_primary_10_1080_00207543_2025_2472298
crossref_primary_10_14778_3749646_3749650
crossref_primary_10_3390_brainsci15050523
crossref_primary_10_3390_make7020038
crossref_primary_10_3390_a18080485
crossref_primary_10_1016_j_knosys_2025_114215
crossref_primary_10_1016_j_knosys_2025_114336
crossref_primary_10_14324_LRE_22_1_40
crossref_primary_10_2196_75279
crossref_primary_10_1038_s41562_025_02162_0
crossref_primary_10_3390_make7030068
crossref_primary_10_1109_TVCG_2024_3456364
crossref_primary_10_1016_j_ipm_2024_104045
crossref_primary_10_1007_s11432_024_4158_4
crossref_primary_10_26907_2541_7746_2023_3_264_281
crossref_primary_10_1016_j_jbi_2024_104730
crossref_primary_10_3390_info15110666
crossref_primary_10_3390_s25133912
crossref_primary_10_1016_j_knosys_2025_113151
crossref_primary_10_1016_j_ipm_2025_104127
crossref_primary_10_1038_s41598_024_77916_3
crossref_primary_10_1093_nar_gkae1080
crossref_primary_10_1097_MCC_0000000000001304
crossref_primary_10_1080_17460441_2025_2490253
crossref_primary_10_1016_j_compag_2025_110396
crossref_primary_10_3390_smartcities7060121
crossref_primary_10_3390_electronics13245037
crossref_primary_10_1016_j_imed_2024_12_001
crossref_primary_10_1016_j_jmsy_2025_07_019
crossref_primary_10_1038_s41598_024_63279_2
crossref_primary_10_1016_j_inffus_2025_103124
crossref_primary_10_1007_s13755_024_00309_3
crossref_primary_10_1109_ACCESS_2025_3551370
crossref_primary_10_1007_s00391_024_02329_w
crossref_primary_10_3389_fpubh_2025_1540946
crossref_primary_10_1007_s10639_025_13456_1
crossref_primary_10_1016_j_websem_2024_100844
crossref_primary_10_1093_gigascience_giae082
crossref_primary_10_1002_widm_1570
crossref_primary_10_1080_10447318_2024_2423335
crossref_primary_10_1007_s13042_024_02434_7
crossref_primary_10_1016_j_knosys_2025_114140
crossref_primary_10_1093_jamia_ocaf059
crossref_primary_10_1007_s00607_025_01499_8
crossref_primary_10_1016_j_eswa_2025_129199
crossref_primary_10_1109_LSP_2024_3456636
crossref_primary_10_1109_LRA_2025_3562776
crossref_primary_10_1108_MSCRA_10_2024_0041
crossref_primary_10_1016_j_websem_2024_100858
crossref_primary_10_1016_j_compchemeng_2025_109064
crossref_primary_10_1016_j_csbj_2024_10_017
crossref_primary_10_1016_j_aei_2025_103422
crossref_primary_10_1016_j_autcon_2024_105632
crossref_primary_10_1111_exsy_70127
crossref_primary_10_1007_s10207_025_00992_7
crossref_primary_10_3390_app151810061
crossref_primary_10_1007_s11442_025_2361_0
crossref_primary_10_1016_j_knosys_2025_113283
crossref_primary_10_1007_s11280_024_01315_x
crossref_primary_10_1177_1420326X251368756
crossref_primary_10_1080_10095020_2025_2483884
crossref_primary_10_1016_j_rcim_2025_102982
crossref_primary_10_1007_s10462_024_10824_0
crossref_primary_10_1088_1742_6596_2833_1_012001
crossref_primary_10_1017_dce_2025_4
crossref_primary_10_1016_j_aei_2025_103633
crossref_primary_10_1016_j_tibtech_2025_02_008
crossref_primary_10_1007_s10489_025_06549_4
crossref_primary_10_1007_s00530_025_01683_y
crossref_primary_10_1371_journal_pone_0323966
crossref_primary_10_1109_ACCESS_2024_3494737
crossref_primary_10_1038_s41598_024_81846_5
crossref_primary_10_3390_info16050335
crossref_primary_10_3390_s24248086
crossref_primary_10_1007_s10270_025_01294_1
crossref_primary_10_1111_tgis_13190
crossref_primary_10_1007_s10506_025_09467_5
crossref_primary_10_1016_j_eswa_2025_127926
crossref_primary_10_3390_app14041508
crossref_primary_10_3390_buildings14082502
crossref_primary_10_14778_3725688_3725718
crossref_primary_10_1109_JIOT_2024_3496491
crossref_primary_10_1016_j_autcon_2025_106362
crossref_primary_10_1007_s40747_024_01658_y
crossref_primary_10_1051_matecconf_202440110009
crossref_primary_10_3390_electronics13193936
crossref_primary_10_1016_j_cie_2025_111375
crossref_primary_10_1016_j_knosys_2025_113503
crossref_primary_10_1016_j_knosys_2025_113060
crossref_primary_10_1038_s41586_025_08710_y
crossref_primary_10_1109_ACCESS_2025_3601225
crossref_primary_10_1016_j_neucom_2024_128490
Cites_doi 10.18653/v1/N18-1202
10.18653/v1/2022.naacl-industry.24
10.1145/3587102.3588827
10.24963/ijcai.2020/267
10.1016/j.bdr.2020.100159
10.18653/v1/2021.emnlp-main.388
10.1007/978-3-030-87571-8_28
10.24963/ijcai.2019/720
10.1145/3191513
10.18653/v1/D19-1282
10.18653/v1/D19-1250
10.18653/v1/P19-1598
10.18653/v1/2022.acl-long.329
10.1007/s10489-022-04123-w
10.48550/ARXIV.1706.03762
10.18653/v1/2023.ijcnlp-main.45
10.1145/3442381.3450043
10.1109/ACCESS.2019.2957812
10.18653/v1/2022.acl-long.295
10.24963/ijcai.2020/502
10.1609/aaai.v33i01.33016473
10.18653/v1/2023.findings-emnlp.885
10.1016/j.jnca.2021.103076
10.18653/v1/2022.emnlp-main.764
10.18653/v1/2020.emnlp-main.346
10.1609/aaai.v33i01.33017152
10.1109/GUCON48875.2020.9231227
10.1016/j.inffus.2020.01.011
10.18653/v1/2021.emnlp-main.296
10.1145/1242572.1242667
10.1609/aaai.v24i1.7519
10.1007/978-3-319-68204-4_8
10.1109/CVPR52729.2023.01457
10.18653/v1/2021.nlp4convai-1.20
10.1016/j.eswa.2022.119369
10.1016/j.aiopen.2021.03.001
10.1609/aaai.v38i17.29889
10.1162/tacl_a_00644
10.1109/jproc.2024.3369017
10.1155/2019/9202457
10.1162/tacl_a_00324
10.18653/v1/2022.acl-long.581
10.18653/v1/2023.acl-long.546
10.24963/ijcai.2021/612
10.1007/978-3-319-60045-1_44
10.1145/3289600.3290956
10.18653/v1/p19-1470
10.1145/3178876.3186175
10.18653/v1/2020.inlg-1.14
10.18653/v1/2020.emnlp-main.99
10.18653/v1/2020.emnlp-main.722
10.1016/j.aiopen.2021.06.004
10.18653/v1/P19-1139
10.18653/v1/2022.findings-acl.150
10.1021/acsomega.0c02055
10.1145/3366423.3380107
10.18653/v1/2023.emnlp-main.59
10.18653/v1/2020.acl-main.703
10.1007/978-3-540-76298-0_52
10.18653/v1/D18-1223
10.18653/v1/D19-5709
10.18653/v1/2020.acl-main.374
10.1162/tacl_a_00360
10.1155/2017/5072427
10.18653/v1/2022.emnlp-main.207
10.1007/s11431-020-1647-3
10.1007/978-3-030-77385-4_41
10.1093/nar/gkh061
10.18653/v1/2022.emnlp-main.346
10.18653/v1/P19-1334
10.18653/v1/2023.ijcnlp-demo.4
10.18653/v1/2023.emnlp-main.574
10.24963/ijcai.2020/554
10.1145/3617680
10.1145/3487553.3524238
10.1609/aaai.v35i7.16796
10.1609/aaai.v31i1.11164
10.18653/v1/2022.naacl-main.372
10.1109/ICDE55515.2023.00229
10.18653/v1/2020.coling-main.217
10.24963/ijcai.2022/318
10.1145/3571730
10.1109/ICSE48619.2023.00110
10.1007/s11280-023-01166-y
10.1145/3618295
10.1145/2629489
10.18653/v1/2020.coling-main.327
10.18653/v1/2021.findings-acl.453
10.1609/aaai.v29i1.9491
10.18653/v1/2022.acl-long.201
10.18653/v1/W17-3518
10.1609/aaai.v36i10.21417
10.18653/v1/2020.findings-emnlp.25
10.1162/tacl_a_00300
10.1145/3539618.3591743
10.1109/ACCESS.2021.3113329
10.1609/aaai.v35i7.16792
10.1145/3539618.3591700
10.18653/v1/2022.naacl-main.379
10.18653/v1/2021.emnlp-main.65
10.18653/v1/2021.findings-acl.223
10.1145/1376616.1376746
10.37068/evu.14.9
10.1109/TNNLS.2021.3070843
10.18653/v1/D19-5827
10.18653/v1/2020.emnlp-main.54
10.18653/v1/2023.findings-acl.208
10.1109/icbk50248.2020.00080
10.18653/v1/2020.findings-emnlp.207
10.18653/v1/2023.findings-acl.275
10.1609/aaai.v33i01.33018876
10.1609/aaai.v36i10.21425
10.18653/v1/2023.emnlp-main.632
10.18653/v1/N19-1250
10.1609/aaai.v34i03.5681
10.24963/ijcai.2018/643
10.1145/3485447.3511921
10.18653/v1/2023.eacl-main.145
10.1145/3649506
10.18653/v1/D19-1588
10.1109/ICCV.2013.178
10.1007/978-3-030-21348-0_30
10.1109/tkde.2022.3224228
10.1609/aaai.v33i01.33017208
10.1109/taslp.2023.3325973
10.18653/v1/2021.naacl-main.41
10.1145/3579051.3579053
10.18653/v1/2022.findings-acl.136
10.18653/v1/2021.findings-acl.102
10.1145/3340531.3411947
10.18653/v1/2021.naacl-main.45
10.18653/v1/2020.emnlp-main.697
10.18653/v1/2020.emnlp-main.750
10.18653/v1/D18-1234
10.1007/978-3-030-30793-6_27
10.18653/v1/2020.acl-main.412
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2024.3352100
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 3599
ExternalDocumentID 10_1109_TKDE_2024_3352100
10387715
Genre orig-research
GrantInformation_xml – fundername: Australian Research Council
  grantid: FT210100097; DP240101547
  funderid: 10.13039/501100000923
– fundername: National Natural Science Foundation of China
  grantid: 62120106008
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-6cebfa9eabaa3b01c739600f1bc59fcbd551fc0cdb0485b5f09c59a65bd926ce3
IEDL.DBID RIE
ISICitedReferencesCount 405
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001245017200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Nov 30 04:09:03 EST 2025
Sat Nov 29 02:36:08 EST 2025
Tue Nov 18 21:52:30 EST 2025
Wed Aug 27 02:06:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-6cebfa9eabaa3b01c739600f1bc59fcbd551fc0cdb0485b5f09c59a65bd926ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0027-942X
0000-0001-7639-5289
0000-0003-0794-527X
0000-0002-4637-9250
0000-0003-2396-1704
PQID 3064713334
PQPubID 85438
PageCount 20
ParticipantIDs crossref_primary_10_1109_TKDE_2024_3352100
crossref_citationtrail_10_1109_TKDE_2024_3352100
ieee_primary_10387715
proquest_journals_3064713334
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Choudhary (ref45) 2023
ref58
Sun (ref101) 2021
ref53
Wang (ref117) 2023
Danilevsky (ref17) 2020
Tay (ref54)
ref50
Shi (ref154) 2019
ref46
ref42
Wei (ref7) 2022
ref8
ref9
ref4
ref6
ref5
Wu (ref201)
ref40
Luo (ref111) 2023
ref35
ref34
ref37
ref36
ref31
ref32
ref39
ref38
Brown (ref59)
Clark (ref52) 2020
Zhang (ref137) 2022
Zoph (ref56) 2022
ref24
Zhang (ref103) 2020
ref23
Luo (ref112) 2023
ref25
ref20
Ouyang (ref60)
ref22
ref21
ref28
ref27
Yin (ref49) 2022
Alt (ref155)
ref200
ref129
ref97
ref126
ref96
ref127
ref124
ref125
Zeng (ref57)
Adolphs (ref128) 2021
ref133
ref95
ref131
ref94
ref132
ref130
Liu (ref2) 2019
ref90
ref89
ref139
ref86
ref85
ref138
ref88
ref135
ref87
ref136
Raffel (ref3) 2020; 21
Yasunaga (ref44)
Han (ref158) 2023
Saravia (ref62) 2022
ref82
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref141
Zhao (ref11) 2023
ref80
ref79
ref108
ref78
ref109
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
Warren (ref99)
ref71
ref70
ref73
Jiang (ref43)
ref72
ref110
ref68
ref119
ref67
ref69
ref118
ref64
ref115
ref66
Zhu (ref93) 2023
ref113
ref123
ref120
ref121
Luo (ref116) 2023
Yao (ref26) 2019
Swamy (ref122) 2021
Diao (ref193) 2022
Sun (ref194)
ref168
ref169
ref170
Touvron (ref61) 2023
ref175
ref176
ref174
ref171
Zhang (ref173)
ref172
ref179
Bordes (ref33)
Zhu (ref98) 2023
Wang (ref29) 2022
ref180
ref181
ref188
ref189
ref187
Rosset (ref91) 2020
ref185
Feng (ref177) 2023
ref182
ref183
ref148
ref147
Liu (ref184) 2023
Golovneva (ref30)
Zhen (ref47) 2022
ref156
ref153
Warren (ref196)
ref151
ref152
ref150
Xiong (ref106)
Wei (ref63); 35
Chen (ref146)
ref159
ref157
Devlin (ref1) 2018
Thoppilan (ref100) 2022
Wei (ref48) 2021
ref166
ref167
ref164
ref165
ref162
ref163
ref160
Liu (ref10) 2023
ref161
ref13
ref12
ref15
ref14
Shen (ref140)
ref16
ref19
Sun (ref178) 2023
Zeng (ref186) 2023
Lan (ref51)
Yang (ref134)
Cao (ref149)
Li (ref191) 2023
Wen (ref65) 2023
Wang (ref18) 2023
Sanh (ref55)
ref192
ref190
ref199
ref197
ref198
ref195
Lewis (ref92)
Guu (ref114)
Melnyk (ref41)
References_xml – ident: ref147
  doi: 10.18653/v1/N18-1202
– ident: ref150
  doi: 10.18653/v1/2022.naacl-industry.24
– ident: ref8
  doi: 10.1145/3587102.3588827
– ident: ref34
  doi: 10.24963/ijcai.2020/267
– year: 2022
  ident: ref29
  article-title: Self-consistency improves chain of thought reasoning in language models
– year: 2022
  ident: ref49
  article-title: A survey of knowledge-intensive NLP with pre-trained language models
– ident: ref86
  doi: 10.1016/j.bdr.2020.100159
– ident: ref129
  doi: 10.18653/v1/2021.emnlp-main.388
– ident: ref157
  doi: 10.1007/978-3-030-87571-8_28
– ident: ref87
  doi: 10.24963/ijcai.2019/720
– ident: ref24
  doi: 10.1145/3191513
– ident: ref38
  doi: 10.18653/v1/D19-1282
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref51
  article-title: ALBERT: A lite bert for self-supervised learning of language representations
– ident: ref14
  doi: 10.18653/v1/D19-1250
– ident: ref113
  doi: 10.18653/v1/P19-1598
– ident: ref120
  doi: 10.18653/v1/2022.acl-long.329
– ident: ref174
  doi: 10.1007/s10489-022-04123-w
– ident: ref50
  doi: 10.48550/ARXIV.1706.03762
– ident: ref28
  doi: 10.18653/v1/2023.ijcnlp-main.45
– ident: ref142
  doi: 10.1145/3442381.3450043
– ident: ref80
  doi: 10.1109/ACCESS.2019.2957812
– ident: ref143
  doi: 10.18653/v1/2022.acl-long.295
– volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref33
  article-title: Translating embeddings for modeling multi-relational data
– volume-title: Proc. 11th Int. Conf. Learn. Representations
  ident: ref57
  article-title: GLM-130B: An open bilingual pre-trained model
– ident: ref76
  doi: 10.24963/ijcai.2020/502
– start-page: 4005
  volume-title: Proc. Int. Conf. Comput. Linguistics
  ident: ref146
  article-title: Knowledge is flat: A Seq2Seq generative framework for various knowledge graph completion
– year: 2023
  ident: ref111
  article-title: ChatKBQA: A generate-then-retrieve framework for knowledge base question answering with fine-tuned large language models
– ident: ref161
  doi: 10.1609/aaai.v33i01.33016473
– ident: ref121
  doi: 10.18653/v1/2023.findings-emnlp.885
– ident: ref23
  doi: 10.1016/j.jnca.2021.103076
– ident: ref104
  doi: 10.18653/v1/2022.emnlp-main.764
– year: 2022
  ident: ref193
  article-title: Black-box prompt learning for pre-trained language models
– ident: ref119
  doi: 10.18653/v1/2020.emnlp-main.346
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref149
  article-title: Autoregressive entity retrieval
– ident: ref136
  doi: 10.1609/aaai.v33i01.33017152
– year: 2023
  ident: ref117
  article-title: Boosting language models reasoning with chain-of-knowledge prompting
– ident: ref95
  doi: 10.1109/GUCON48875.2020.9231227
– ident: ref199
  doi: 10.1016/j.inffus.2020.01.011
– year: 2023
  ident: ref191
  article-title: Unveiling the pitfalls of knowledge editing for large language models
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref173
  article-title: GreaseLM: Graph reasoning enhanced language models
– year: 2022
  ident: ref62
  article-title: Prompt engineering guide
– ident: ref170
  doi: 10.18653/v1/2021.emnlp-main.296
– volume-title: Proc. AAAI Spring Symp. Combining Mach. Learn. Knowl. Eng.
  ident: ref99
  article-title: Knowledge engineering with image data in real-world settings
– year: 2023
  ident: ref186
  article-title: AgentTuning: Enabling generalized agent abilities for LLMs
– volume: 35
  start-page: 24824
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref63
  article-title: Chain-of-thought prompting elicits reasoning in large language models
– ident: ref31
  doi: 10.1145/1242572.1242667
– year: 2023
  ident: ref65
  article-title: MindMap: Knowledge graph prompting sparks graph of thoughts in large language models
– start-page: 1877
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref59
  article-title: Language models are few-shot learners
– ident: ref32
  doi: 10.1609/aaai.v24i1.7519
– ident: ref84
  doi: 10.1007/978-3-319-68204-4_8
– volume-title: Proc. 1st Conf. Automated Knowl. Base Construction
  ident: ref155
  article-title: Improving relation extraction by pre-trained language representations
– start-page: 41
  volume-title: Proc. 1st Workshop Subjectivity Ambiguity Disagreement Crowdsourcing
  ident: ref196
  article-title: Bounding ambiguity: Experiences with an image annotation system
– ident: ref198
  doi: 10.1109/CVPR52729.2023.01457
– ident: ref163
  doi: 10.18653/v1/2021.nlp4convai-1.20
– ident: ref176
  doi: 10.1016/j.eswa.2022.119369
– ident: ref22
  doi: 10.1016/j.aiopen.2021.03.001
– ident: ref185
  doi: 10.1609/aaai.v38i17.29889
– ident: ref192
  doi: 10.1162/tacl_a_00644
– ident: ref200
  doi: 10.1109/jproc.2024.3369017
– ident: ref78
  doi: 10.1155/2019/9202457
– ident: ref118
  doi: 10.1162/tacl_a_00324
– ident: ref39
  doi: 10.18653/v1/2022.acl-long.581
– ident: ref130
  doi: 10.18653/v1/2023.acl-long.546
– ident: ref6
  doi: 10.24963/ijcai.2021/612
– ident: ref68
  doi: 10.1007/978-3-319-60045-1_44
– ident: ref132
  doi: 10.1145/3289600.3290956
– ident: ref159
  doi: 10.18653/v1/p19-1470
– ident: ref133
  doi: 10.1145/3178876.3186175
– ident: ref164
  doi: 10.18653/v1/2020.inlg-1.14
– ident: ref168
  doi: 10.18653/v1/2020.emnlp-main.99
– ident: ref102
  doi: 10.18653/v1/2020.emnlp-main.722
– ident: ref180
  doi: 10.1016/j.aiopen.2021.06.004
– ident: ref35
  doi: 10.18653/v1/P19-1139
– start-page: 1965
  volume-title: Proc. Int. Conf. Comput. Linguistics
  ident: ref140
  article-title: Joint language semantic and structure embedding for knowledge graph completion
– year: 2023
  ident: ref178
  article-title: Think-on-graph: Deep and responsible reasoning of large language model with knowledge graph
– ident: ref125
  doi: 10.18653/v1/2022.findings-acl.150
– year: 2022
  ident: ref137
  article-title: Reasoning through memorization: Nearest neighbor knowledge graph embeddings
– ident: ref81
  doi: 10.1021/acsomega.0c02055
– ident: ref74
  doi: 10.1145/3366423.3380107
– ident: ref189
  doi: 10.18653/v1/2023.emnlp-main.59
– ident: ref5
  doi: 10.18653/v1/2020.acl-main.703
– ident: ref67
  doi: 10.1007/978-3-540-76298-0_52
– year: 2022
  ident: ref47
  article-title: A survey on knowledge-enhanced pre-trained language models
– ident: ref135
  doi: 10.18653/v1/D18-1223
– ident: ref53
  doi: 10.18653/v1/D19-5709
– ident: ref124
  doi: 10.18653/v1/2020.acl-main.374
– ident: ref40
  doi: 10.1162/tacl_a_00360
– year: 2018
  ident: ref1
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
– ident: ref79
  doi: 10.1155/2017/5072427
– year: 2020
  ident: ref17
  article-title: A survey of the state of explainable AI for natural language processing
– ident: ref109
  doi: 10.18653/v1/2022.emnlp-main.207
– ident: ref12
  doi: 10.1007/s11431-020-1647-3
– year: 2023
  ident: ref184
  article-title: AgentBench: Evaluating LLMs as agents
– ident: ref70
  doi: 10.1007/978-3-030-77385-4_41
– ident: ref77
  doi: 10.1093/nar/gkh061
– ident: ref115
  doi: 10.18653/v1/2022.emnlp-main.346
– ident: ref126
  doi: 10.18653/v1/P19-1334
– start-page: 3929
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref114
  article-title: REALM: Retrieval-augmented language model pre-training
– volume-title: Proc. NeurIPS 2021 Workshop Deep Generative Models Downstream Appl.
  ident: ref41
  article-title: Grapher: Multi-stage knowledge graph construction using pretrained language models
– year: 2023
  ident: ref112
  article-title: Reasoning on graphs: Faithful and interpretable large language model reasoning
– ident: ref139
  doi: 10.18653/v1/2023.ijcnlp-demo.4
– ident: ref175
  doi: 10.18653/v1/2023.emnlp-main.574
– ident: ref75
  doi: 10.24963/ijcai.2020/554
– year: 2020
  ident: ref103
  article-title: E-BERT: A phrase and product knowledge enhanced language model for E-commerce
– ident: ref16
  doi: 10.1145/3617680
– ident: ref96
  doi: 10.1145/3487553.3524238
– ident: ref37
  doi: 10.1609/aaai.v35i7.16796
– ident: ref71
  doi: 10.1609/aaai.v31i1.11164
– year: 2023
  ident: ref158
  article-title: PiVe: Prompting with iterative verification improving graph-based generative capability of LLMs
– ident: ref183
  doi: 10.18653/v1/2022.naacl-main.372
– ident: ref90
  doi: 10.1109/ICDE55515.2023.00229
– ident: ref165
  doi: 10.18653/v1/2020.coling-main.217
– ident: ref138
  doi: 10.24963/ijcai.2022/318
– ident: ref15
  doi: 10.1145/3571730
– ident: ref9
  doi: 10.1109/ICSE48619.2023.00110
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref201
  article-title: Pretrained language model in continual learning: A comparative study
– ident: ref171
  doi: 10.1007/s11280-023-01166-y
– ident: ref25
  doi: 10.1145/3618295
– ident: ref20
  doi: 10.1145/2629489
– ident: ref107
  doi: 10.18653/v1/2020.coling-main.327
– year: 2023
  ident: ref45
  article-title: Complex logical reasoning over knowledge graphs using large language models
– ident: ref153
  doi: 10.18653/v1/2021.findings-acl.453
– ident: ref144
  doi: 10.1609/aaai.v29i1.9491
– ident: ref145
  doi: 10.18653/v1/2022.acl-long.201
– start-page: 20 841
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref194
  article-title: Black-box tuning for language-model-as-a-service
– ident: ref160
  doi: 10.18653/v1/W17-3518
– year: 2023
  ident: ref116
  article-title: ChatRule: Mining logical rules with large language models for knowledge graph reasoning
– ident: ref181
  doi: 10.1609/aaai.v36i10.21417
– year: 2021
  ident: ref48
  article-title: Knowledge enhanced pretrained language models: A compreshensive survey
– ident: ref94
  doi: 10.18653/v1/2020.findings-emnlp.25
– ident: ref152
  doi: 10.1162/tacl_a_00300
– ident: ref27
  doi: 10.1145/3539618.3591743
– ident: ref141
  doi: 10.1109/ACCESS.2021.3113329
– year: 2023
  ident: ref11
  article-title: A survey of large language models
– ident: ref73
  doi: 10.1609/aaai.v35i7.16792
– ident: ref97
  doi: 10.1145/3539618.3591700
– ident: ref105
  doi: 10.18653/v1/2022.naacl-main.379
– year: 2020
  ident: ref52
  article-title: ELECTRA: Pre-training text encoders as discriminators rather than generators
– start-page: 37 309
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref44
  article-title: Deep bidirectional language-knowledge graph pretraining
– volume-title: Proc. 11th Int. Conf. Learn. Representations
  ident: ref54
  article-title: UL2: Unifying language learning paradigms
– year: 2022
  ident: ref100
  article-title: LaMDA: Language models for dialog applications
– ident: ref127
  doi: 10.18653/v1/2021.emnlp-main.65
– volume: 21
  start-page: 5485
  issue: 1
  year: 2020
  ident: ref3
  article-title: Exploring the limits of transfer learning with a unified text-to-text transformer
  publication-title: J. Mach. Learn. Res.
– year: 2023
  ident: ref177
  article-title: Knowledge solver: Teaching LLMs to search for domain knowledge from knowledge graphs
– year: 2023
  ident: ref93
  article-title: LLMs for knowledge graph construction and reasoning: Recent capabilities and future opportunities
– ident: ref42
  doi: 10.18653/v1/2021.findings-acl.223
– ident: ref66
  doi: 10.1145/1376616.1376746
– ident: ref69
  doi: 10.37068/evu.14.9
– ident: ref19
  doi: 10.1109/TNNLS.2021.3070843
– year: 2023
  ident: ref61
  article-title: LLaMA: Open and efficient foundation language models
– year: 2023
  ident: ref18
  article-title: On the robustness of ChatGPT: An adversarial and out-of-distribution perspective
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref55
  article-title: Multitask prompted training enables zero-shot task generalization
– year: 2019
  ident: ref26
  article-title: KG-BERT: BERT for knowledge graph completion
– ident: ref4
  doi: 10.18653/v1/D19-5827
– ident: ref72
  doi: 10.18653/v1/2020.emnlp-main.54
– ident: ref64
  doi: 10.18653/v1/2023.findings-acl.208
– ident: ref82
  doi: 10.1109/icbk50248.2020.00080
– ident: ref179
  doi: 10.18653/v1/2020.findings-emnlp.207
– ident: ref188
  doi: 10.18653/v1/2023.findings-acl.275
– ident: ref88
  doi: 10.1609/aaai.v33i01.33018876
– start-page: 9459
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref92
  article-title: Retrieval-augmented generation for knowledge-intensive NLP tasks
– ident: ref108
  doi: 10.1609/aaai.v36i10.21425
– ident: ref190
  doi: 10.18653/v1/2023.emnlp-main.632
– year: 2021
  ident: ref122
  article-title: Interpreting language models through knowledge graph extraction
– ident: ref148
  doi: 10.18653/v1/N19-1250
– ident: ref36
  doi: 10.1609/aaai.v34i03.5681
– ident: ref162
  doi: 10.24963/ijcai.2018/643
– ident: ref110
  doi: 10.1145/3485447.3511921
– year: 2021
  ident: ref128
  article-title: How to query language models?
– year: 2021
  ident: ref101
  article-title: ERNIE 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation
– ident: ref156
  doi: 10.18653/v1/2023.eacl-main.145
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref106
  article-title: Pretrained encyclopedia: Weakly supervised knowledge-pretrained language model
– start-page: 27 730
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref60
  article-title: Training language models to follow instructions with human feedback
– year: 2020
  ident: ref91
  article-title: Knowledge-aware language model pretraining
– ident: ref13
  doi: 10.1145/3649506
– ident: ref151
  doi: 10.18653/v1/D19-1588
– ident: ref195
  doi: 10.1109/ICCV.2013.178
– year: 2019
  ident: ref154
  article-title: Simple BERT models for relation extraction and semantic role labeling
– year: 2022
  ident: ref7
  article-title: Emergent abilities of large language models
  publication-title: Trans. Mach. Learn. Res.
– ident: ref85
  doi: 10.1007/978-3-030-21348-0_30
– year: 2023
  ident: ref10
  article-title: Is ChatGPT a good recommender? A preliminary study
– volume-title: Proc. 11th Int. Conf. Learn. Representations
  ident: ref43
  article-title: UniKGQA: Unified retrieval and reasoning for solving multi-hop question answering over knowledge graph
– ident: ref83
  doi: 10.1109/tkde.2022.3224228
– ident: ref182
  doi: 10.1609/aaai.v33i01.33017208
– ident: ref46
  doi: 10.1109/taslp.2023.3325973
– volume-title: Proc. 11th Int. Conf. Learn. Representations
  ident: ref30
  article-title: ROSCOE: A suite of metrics for scoring step-by-step reasoning
– ident: ref58
  doi: 10.18653/v1/2021.naacl-main.41
– year: 2022
  ident: ref56
  article-title: ST-MoE: Designing stable and transferable sparse expert models
– ident: ref197
  doi: 10.1145/3579051.3579053
– year: 2023
  ident: ref98
  article-title: MiniGPT-4: Enhancing vision-language understanding with advanced large language models
– ident: ref123
  doi: 10.18653/v1/2022.findings-acl.136
– ident: ref169
  doi: 10.18653/v1/2021.findings-acl.102
– ident: ref89
  doi: 10.1145/3340531.3411947
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref134
  article-title: Embedding entities and relations for learning and inference in knowledge bases
– ident: ref131
  doi: 10.18653/v1/2021.naacl-main.45
– year: 2019
  ident: ref2
  article-title: RoBERTa: A robustly optimized bert pretraining approach
– ident: ref166
  doi: 10.18653/v1/2020.emnlp-main.697
– ident: ref187
  doi: 10.18653/v1/2020.emnlp-main.750
– ident: ref21
  doi: 10.18653/v1/D18-1234
– ident: ref172
  doi: 10.1007/978-3-030-30793-6_27
– ident: ref167
  doi: 10.18653/v1/2020.acl-main.412
SSID ssj0008781
Score 2.7643778
Snippet Large language models (LLMs), such as ChatGPT and GPT4, are making new waves in the field of natural language processing and artificial intelligence, due to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3580
SubjectTerms Artificial intelligence
bidirectional reasoning
Chatbots
Cognition
Decoding
generative pre-training
Graphs
Inference
Knowledge graphs
Knowledge representation
Large language models
Natural language processing
Predictive models
roadmap
Task analysis
Training
Title Unifying Large Language Models and Knowledge Graphs: A Roadmap
URI https://ieeexplore.ieee.org/document/10387715
https://www.proquest.com/docview/3064713334
Volume 36
WOSCitedRecordID wos001245017200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46POjB6VScTsnBk9At_ZG-1oMwdFOYDJEJu5X8BGF2Y938-03SdgxEwUspNCnlvb4k30u-9yF0Q5XPgQaxR4VUXgQJ9RiPqSfN3CATCpL40olNwHicTKfpa0VWd1wYpZQ7fKa69tbt5cu5WNtUWc8W8wawlPJdgLgka22G3QScIqmBFwYUhRFUW5g-SXuT0ePAQMEg6lqGkW_ZbFuTkFNV-TEUu_ll2Pznlx2hw2ohiful54_RjspbqFmLNOAqZlvoYKvi4Am6N2tMx2zCL_YIuLmW6UpsNdFmBWa5xKM6zYafbDXr4g738ducyU-2OEXvw8Hk4dmrJBQ8EaTRyouF4pqlinHGQk58AaGBLET7XNBUCy7NgkkLIiQ3kUw51SQ1D1hMuUwD0zk8Q418nqtzhFkIKlIByFBCxCRJtEp0CForAOYT2UaktmkmqvriVuZiljmcQdLMuiGzbsgqN7TR7abLoiyu8VfjU2v3rYalyduoU3suq-KvyCyusvA7jC5-6XaJ9u3by5O3HdRYLdfqCu2Jr9VHsbx2v9Y3zAjKnA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5EBfVgfWK1ag6ehK3ZR5pdD4Joq9JaRCr0tuQJgrZiq7_fTDaVgih4WRY2YZeZnSTfJN98ACfMxJKzpBUxpU2U8ZxFQrZYpN3coHPGNY21F5vg_X4-HBYPgazuuTDGGH_4zDTx1u_l67H6wFTZGRbz5hwp5UsonRXoWt8Db869JqkDGA4WpRkPm5gxLc4G3eu2A4NJ1kSOUYx8trlpyOuq_BiM_QzTqf3z2zZgPSwlyWXl-01YMKMtqM1kGkiI2i1Ym6s5uA0XbpXpuU2kh4fA3bVKWBJURXuZEDHSpDtLtJEbrGc9OSeX5HEs9Kt424GnTntwdRsFEYVIJUU2jVrKSCsKI6QQqaSx4qkDLdTGUrHCKqndkskqqrR0scwks7RwD0SLSV0krnO6C4uj8cjsAREpN5lJuE41z4SmuTW5Tbm1hnMRU10HOrNpqUKFcRS6eCk90qBFiW4o0Q1lcEMdTr-7vFXlNf5qvIN2n2tYmbwOjZnnyhCBkxKRFQLwNNv_pdsxrNwO7ntl767fPYBVfFN1DrcBi9P3D3MIy-pz-jx5P_K_2ReGGc3l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unifying+Large+Language+Models+and+Knowledge+Graphs%3A+A+Roadmap&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Pan%2C+Shirui&rft.au=Luo%2C+Linhao&rft.au=Wang%2C+Yufei&rft.au=Chen%2C+Chen&rft.date=2024-07-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=36&rft.issue=7&rft.spage=3580&rft.epage=3599&rft_id=info:doi/10.1109%2FTKDE.2024.3352100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2024_3352100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon