An Unsupervised Snow Segmentation Approach Based on Dual-polarized Scattering Mechanism and Deep Neural Network
Distribution of snow and its melting is a critical factor affecting local weather, avalanche and flood forecasting, livelihood of people residing, and hydropower production. Most of the existing dry and wet snow identification methods were based on expensive quad-pol SAR with finite generalizability...
Saved in:
| Published in: | IEEE transactions on geoscience and remote sensing Vol. 61; p. 1 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Distribution of snow and its melting is a critical factor affecting local weather, avalanche and flood forecasting, livelihood of people residing, and hydropower production. Most of the existing dry and wet snow identification methods were based on expensive quad-pol SAR with finite generalizability, while dual-pol SAR with larger coverage, longer time series and open availability has more advantages. In this study, an unsupervised algorithm for dry and wet snow discrimination, NSAE-WFCM, is proposed based on a variety of polarimetric features derived from H-α decomposition in dual-pol mode using C-band Sentinel-1 SAR data. NSAE-WFCM constructs a deep training network using the pixel neighborhood-based sparse autoencoder (NSAE) to optimize polarimetric parameters, and inputs reconstructed features with different weights into feature-weighted fuzzy C-means clustering (WFCM) to distinguish dry and wet snow for each underlying surface. Ground observation was carried out during the snow melting period of March 2021 in Altay, China, to validate dual-pol NSAE-WFCM method with an overall accuracy and kappa coefficient of 88.8% and 0.68, respectively. The results show that NSAE-WFCM's accuracy is similar to that of the quad-pol SAR-based dry and wet snow result (90.0%), and significantly better than that of previously published approaches extended to dual-pol SAR, such as SVM (76.7%), H-α-Wishart (65.5%), SPAN-based threshold method (51.7%), and wet snow-based method (43.1%). Therefore, the NSAE-WFCM algorithm improves the ability to classify wet and dry snow based on dual-pol polarimetric features, overcomes the high dependence of existing methods on quad-pol SAR data, and reduces manual interpretation by using unsupervised clustering. |
|---|---|
| AbstractList | Distribution of snow and its melting is a critical factor affecting local weather, avalanche and flood forecasting, livelihood of people residing, and hydropower production. Most of the existing dry and wet snow identification methods were based on expensive quad-pol SAR with finite generalizability, while dual-pol SAR with larger coverage, longer time series and open availability has more advantages. In this study, an unsupervised algorithm for dry and wet snow discrimination, NSAE-WFCM, is proposed based on a variety of polarimetric features derived from H-α decomposition in dual-pol mode using C-band Sentinel-1 SAR data. NSAE-WFCM constructs a deep training network using the pixel neighborhood-based sparse autoencoder (NSAE) to optimize polarimetric parameters, and inputs reconstructed features with different weights into feature-weighted fuzzy C-means clustering (WFCM) to distinguish dry and wet snow for each underlying surface. Ground observation was carried out during the snow melting period of March 2021 in Altay, China, to validate dual-pol NSAE-WFCM method with an overall accuracy and kappa coefficient of 88.8% and 0.68, respectively. The results show that NSAE-WFCM's accuracy is similar to that of the quad-pol SAR-based dry and wet snow result (90.0%), and significantly better than that of previously published approaches extended to dual-pol SAR, such as SVM (76.7%), H-α-Wishart (65.5%), SPAN-based threshold method (51.7%), and wet snow-based method (43.1%). Therefore, the NSAE-WFCM algorithm improves the ability to classify wet and dry snow based on dual-pol polarimetric features, overcomes the high dependence of existing methods on quad-pol SAR data, and reduces manual interpretation by using unsupervised clustering. Distribution of snow and its melting is a critical factor affecting local weather, avalanche and flood forecasting, livelihood of people residing, and hydropower production. Most of the existing dry and wet snow identification methods were based on expensive quad-pol synthetic aperture radar (SAR) with finite generalizability, while dual-pol SAR with larger coverage, longer time series, and open availability has more advantages. In this study, an unsupervised algorithm for dry and wet snow discrimination, neighborhood-based sparse autoencoder (NSAE)-weighted fuzzy C-means clustering (WFCM), is proposed based on a variety of polarimetric features derived from the [Formula Omitted]–[Formula Omitted] decomposition in the dual-pol mode using the C-band Sentinel-1 SAR data. NSAE-WFCM constructs a deep training network using the pixel NSAE to optimize polarimetric parameters and inputs reconstructed features with different weights into feature-WFCM to distinguish dry and wet snow for each underlying surface. Ground observation was carried out during the snow melting period of March 2021 in Altay, China, to validate the dual-pol NSAE-WFCM method with an overall accuracy and a Kappa coefficient of 88.8% and 0.68, respectively. The results show that NSAE-WFCM’s accuracy is similar to that of the quad-pol SAR-based dry and wet snow result (90.0%) and significantly better than that of previously published approaches extended to dual-pol SAR, such as support vector machine (SVM) (76.7%), H–[Formula Omitted]-Wishart (65.5%), total power-based method (51.7%), and wet snow-based method (43.1%). Therefore, the NSAE-WFCM algorithm improves the ability to classify wet and dry snow based on dual-pol polarimetric features, overcomes the high dependence of existing methods on quad-pol SAR data, and reduces manual interpretation by using unsupervised clustering. |
| Author | Wu, Zhipeng Li, Zhen Huang, Lei Li, Gang Zhang, Ping Liu, Chang |
| Author_xml | – sequence: 1 givenname: Chang orcidid: 0000-0003-0513-8183 surname: Liu fullname: Liu, Chang organization: Aerospace Information Research Institute, Key Laboratory of Digital Earth Science, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Zhen orcidid: 0000-0003-3491-0697 surname: Li fullname: Li, Zhen organization: Aerospace Information Research Institute, Key Laboratory of Digital Earth Science, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Zhipeng surname: Wu fullname: Wu, Zhipeng organization: Aerospace Information Research Institute, Key Laboratory of Digital Earth Science, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Lei surname: Huang fullname: Huang, Lei organization: Aerospace Information Research Institute, Key Laboratory of Digital Earth Science, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Ping orcidid: 0000-0002-8401-4818 surname: Zhang fullname: Zhang, Ping organization: Aerospace Information Research Institute, Key Laboratory of Digital Earth Science, Chinese Academy of Sciences, Beijing, China – sequence: 6 givenname: Gang orcidid: 0000-0001-9755-2781 surname: Li fullname: Li, Gang organization: Department of Electronic Engineering, Tsinghua University, Beijing, China |
| BookMark | eNp9kMlKBDEQhoMoOC4PIHgIeO4xSS9JjuMuuICj56ZM12i0J2mTbkWf3jTjQTx4qqL4v6ri2yLrzjskZI-zKedMH96f382ngol8motKSCHXyISXpcpYVRTrZMK4rjKhtNgkWzG-MMaLkssJ8TNHH1wcOgzvNmJD585_0Dk-LdH10Fvv6KzrggfzTI9gDKTJyQBt1vkWgv0aEQN9j8G6J3qN5hmcjUsKrqEniB29wSFAm0r_4cPrDtlYQBtx96duk4ez0_vji-zq9vzyeHaVGaGLPqseeWVYYwQ0yihIvVpIpo0SUmtRsNxUrJI5KgYFYGMWquGAQmJTom5EmW-Tg9Xe9PvbgLGvX_wQXDpZpxVSaJnspBRfpUzwMQZc1F2wSwifNWf16LUevdaj1_rHa2LkH8bYlak-gG3_JfdXpEXEX5eYypku82-v-4jy |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_5194_tc_19_1621_2025 crossref_primary_10_1007_s10489_024_05297_1 |
| Cites_doi | 10.1109/TGRS.2021.3137588 10.1080/01969727308546046 10.1016/B978-0-12-819764-6.00004-1 10.1109/ICIG.2009.165 10.1016/j.jhydrol.2017.07.051 10.1109/36.551935 10.1080/10106049.2022.2043450 10.1109/IGARSS.2014.6947062 10.1080/01431161.2012.748992 10.1109/36.842004 10.1017/9781009325844 10.1109/36.885196 10.1109/LGRS.2017.2764123 10.1109/LGRS.2021.3050921 10.1007/s12524-016-0609-y 10.1016/j.rse.2011.03.004 10.1029/2019WR025449 10.1016/j.jag.2018.09.011 10.1016/j.rse.2011.05.028 10.1109/TGRS.2013.2281462 10.1109/TGRS.2008.2000818 10.3390/rs70607447 10.1016/j.patcog.2009.04.013 10.1109/JSTARS.2014.2323199 10.1109/JSTARS.2018.2817687 10.1109/TPAMI.2006.168 10.1016/j.isprsjprs.2020.08.021 10.1016/0034-4257(89)90101-6 10.3390/rs8040348 10.1016/j.envpol.2020.116234 10.1016/j.rse.2018.09.003 10.1016/0273-1177(89)90493-6 10.1109/TGRS.2021.3064309 10.1109/LGRS.2012.2219848 10.1029/2005RG000183 10.1038/s41597-021-01059-7 10.1109/TGRS.2005.852084 10.1109/IGARSS.2004.1370697 10.1109/JSTARS.2017.2673409 10.1186/s10033-021-00569-0 10.1109/IGARSS.2008.4779900 10.3390/rs70911602 10.3390/rs11080895 10.1109/TGRS.2006.886176 10.1016/j.isprsjprs.2015.05.001 10.1093/acprof:oso/9780199569731.001.0001 10.1016/j.jhydrol.2016.10.025 10.1109/LGRS.2015.2478256 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2023.3262727 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TGRS_2023_3262727 10083095 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: the National Key Research and Development Program of China grantid: 2018YFA0605403 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 Y6R 5VS AAYXX AETIX AGSQL AI. AIBXA CITATION EJD H~9 IBMZZ ICLAB IFJZH VH1 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c294t-6b16c0dc2ad8c8a6c08f709c827992403c60673e80a4aedcf8d1ae27ed5e9d253 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000965182200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:27:00 EDT 2025 Tue Nov 18 22:35:25 EST 2025 Sat Nov 29 03:32:20 EST 2025 Wed Aug 27 02:21:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-6b16c0dc2ad8c8a6c08f709c827992403c60673e80a4aedcf8d1ae27ed5e9d253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9755-2781 0000-0003-0513-8183 0000-0002-8401-4818 0000-0003-3491-0697 |
| PQID | 2797297155 |
| PQPubID | 85465 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_TGRS_2023_3262727 proquest_journals_2797297155 crossref_citationtrail_10_1109_TGRS_2023_3262727 ieee_primary_10083095 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 Cloude (ref18) ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Ng (ref27) 2011 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 Wang (ref37) 2018; 33 |
| References_xml | – ident: ref24 doi: 10.1109/TGRS.2021.3137588 – ident: ref28 doi: 10.1080/01969727308546046 – start-page: 1 volume-title: Proc. POLINSAR ident: ref18 article-title: The dual polarization entropy/alpha decomposition: A PALSAR case study – ident: ref29 doi: 10.1016/B978-0-12-819764-6.00004-1 – ident: ref33 doi: 10.1109/ICIG.2009.165 – ident: ref2 doi: 10.1016/j.jhydrol.2017.07.051 – ident: ref11 doi: 10.1109/36.551935 – ident: ref35 doi: 10.1080/10106049.2022.2043450 – ident: ref22 doi: 10.1109/IGARSS.2014.6947062 – volume: 33 start-page: 12 issue: 1 year: 2018 ident: ref37 article-title: Investigation on snow characteristics and their distribution in China publication-title: Adv. Earth Sci. – ident: ref40 doi: 10.1080/01431161.2012.748992 – ident: ref8 doi: 10.1109/36.842004 – ident: ref4 doi: 10.1017/9781009325844 – ident: ref5 doi: 10.1109/36.885196 – ident: ref16 doi: 10.1109/LGRS.2017.2764123 – ident: ref25 doi: 10.1109/LGRS.2021.3050921 – ident: ref48 doi: 10.1007/s12524-016-0609-y – ident: ref19 doi: 10.1016/j.rse.2011.03.004 – ident: ref15 doi: 10.1029/2019WR025449 – ident: ref46 doi: 10.1016/j.jag.2018.09.011 – ident: ref6 doi: 10.1016/j.rse.2011.05.028 – ident: ref32 doi: 10.1109/TGRS.2013.2281462 – ident: ref20 doi: 10.1109/TGRS.2008.2000818 – ident: ref51 doi: 10.3390/rs70607447 – ident: ref30 doi: 10.1016/j.patcog.2009.04.013 – ident: ref36 doi: 10.1109/JSTARS.2014.2323199 – ident: ref47 doi: 10.1109/JSTARS.2018.2817687 – ident: ref31 doi: 10.1109/TPAMI.2006.168 – ident: ref38 doi: 10.1016/j.isprsjprs.2020.08.021 – ident: ref43 doi: 10.1016/0034-4257(89)90101-6 – ident: ref42 doi: 10.3390/rs8040348 – ident: ref3 doi: 10.1016/j.envpol.2020.116234 – ident: ref34 doi: 10.1016/j.rse.2018.09.003 – ident: ref7 doi: 10.1016/0273-1177(89)90493-6 – ident: ref44 doi: 10.1109/TGRS.2021.3064309 – ident: ref41 doi: 10.1109/LGRS.2012.2219848 – ident: ref39 doi: 10.1029/2005RG000183 – ident: ref45 doi: 10.1038/s41597-021-01059-7 – start-page: 1 volume-title: Sparse Autoencoder year: 2011 ident: ref27 – ident: ref13 doi: 10.1109/TGRS.2005.852084 – ident: ref49 doi: 10.1109/IGARSS.2004.1370697 – ident: ref14 doi: 10.1109/JSTARS.2017.2673409 – ident: ref21 doi: 10.1186/s10033-021-00569-0 – ident: ref50 doi: 10.1109/IGARSS.2008.4779900 – ident: ref9 doi: 10.3390/rs70911602 – ident: ref10 doi: 10.3390/rs11080895 – ident: ref12 doi: 10.1109/TGRS.2006.886176 – ident: ref17 doi: 10.1016/j.isprsjprs.2015.05.001 – ident: ref26 doi: 10.1093/acprof:oso/9780199569731.001.0001 – ident: ref1 doi: 10.1016/j.jhydrol.2016.10.025 – ident: ref23 doi: 10.1109/LGRS.2015.2478256 |
| SSID | ssj0014517 |
| Score | 2.4348001 |
| Snippet | Distribution of snow and its melting is a critical factor affecting local weather, avalanche and flood forecasting, livelihood of people residing, and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks C band Clustering Dry and wet snow Dual polarization radar Feature extraction feature-weighted fuzzy C-means Flood forecasting Hydroelectric power Identification methods Melting Methods Neural networks polarimetric decomposition Polarimetry Radar polarimetry River discharge SAR (radar) Scattering Snow Snow avalanches Snowmelt sparse autoencoder Speckle Support vector machines Synthetic aperture radar Training Weather forecasting |
| Title | An Unsupervised Snow Segmentation Approach Based on Dual-polarized Scattering Mechanism and Deep Neural Network |
| URI | https://ieeexplore.ieee.org/document/10083095 https://www.proquest.com/docview/2797297155 |
| Volume | 61 |
| WOSCitedRecordID | wos000965182200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NaxsxEB2a0EB7aL6p2yTo0FNAjixLu9LRbb4uNaVOILdFlmaLIVmbrN1Cf301WiUYSgq9iUUSWr1daUajeQ_gk641Tq0J3HlnuNLScGO05kI4X9QOtZ76JDZRjsfm7s5-y8nqKRcGEdPlM-xTMcXyw9yv6KjsjIhohtEm2ICNsiy6ZK3nkIHSg5wbXfDoRcgcwhwIe3Zz9X3SJ53wfjRWZEkKMmubUFJV-WspTvvL5fZ_jmwH3mVDko065HfhFTZ78HaNXnAPttL1Tt_uw3zUsNumXS1oZWgxsEkz_8Um-OMhpx41bJTJxdlnRxXik_OVu-cLcn1nv6mJT1ScsWf2FSlfeNY-MNcEdo64YETyEYcz7m6VH8Dt5cXNl2uepRa4l1YteTEdFF4EL10w3rhYNnUprDeytJYo-3xBijZohFMOg69NGDiUJQaNNkg9PITNZt7ge2BSOW-Ci4ZntCxVUG5YKIFWeV1H10gMeyCe5r7ymYec5DDuq-SPCFsRXBXBVWW4enD63GTRkXD8q_IB4bNWsYOmB0dPCFf5P22r-HrRuyijUfXhhWYf4Q313p26HMHm8nGFx_Da_1zO2seT9An-AWNY2SU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BAAEP_NgPrTDADzwhuXNdO7EfC2MMsVWIdtLeIte-oEpbWi0tSPz1-BxvqoRA4s2KfImdL7HvbN_3AbzVtcaZNYE77wxXWhpujNZcCOeL2qHWM5_EJsrx2Fxc2K85WT3lwiBiOnyGfSqmvfyw8GtaKjskIpph9Anuwj2tlBRdutbtpoHSg5wdXfAYR8i8iTkQ9nD66dukT0rh_eiuyJI0ZDamoaSr8sdgnGaY46f_2bZn8CS7kmzUYf8c7mCzDY83CAa34UE64OnbHViMGnbetOsljQ0tBjZpFj_ZBL9f5eSjho0yvTh776hCvHK0dpd8ScHv_BeZ-ETGGe_MzpAyhuftFXNNYEeIS0Y0H7E54-5c-S6cH3-cfjjhWWyBe2nVihezQeFF8NIF442LZVOXwnojS2uJtM8XpGmDRjjlMPjahIFDWWLQaIPUwz3YahYN7gOTynkTXHQ9o2-pgnLDQgm0yus6Bkdi2ANx8-4rn5nISRDjskoRibAVwVURXFWGqwfvbk2WHQ3HvyrvEj4bFTtoenBwg3CV_9S2it2L8UUZ3aoXfzF7Aw9Ppmen1enn8ZeX8Iie1K3BHMDW6nqNr-C-_7Gat9ev0-f4G9bq3Gw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Unsupervised+Snow+Segmentation+Approach+Based+on+Dual-polarized+Scattering+Mechanism+and+Deep+Neural+Network&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Liu%2C+Chang&rft.au=Li%2C+Zhen&rft.au=Wu%2C+Zhipeng&rft.au=Huang%2C+Lei&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0196-2892&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTGRS.2023.3262727&rft.externalDocID=10083095 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |